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Abstract

Single-cell sequencing techniques have unveiled new dimensions

in gene expression analysis at the cellular level, offering insights

into cell differentiation and development. We introduce scCST,

a Continuous Spatial-Temporal Transformer, specifically

designed to interpolate cellular trajectories between sampled

time points, providing value information on the unknown

data. This model outperforms conventional Transformers,

delivering a more coherent and detailed representation of

cellular progression across time points.

Our study encompasses a comprehensive evaluation of

various model architectures. For projecting cells into latent

space, we experimented with PCA, scVAE, and ZINB-WaVE.

In cell alignment, we compared the Optimal Transport (OT)

Algorithm for continuous alignment and the Jonker-Volgenant

(JV) Algorithm for linear alignment. Further, we assessed

the effectiveness of incorporating noise in our CST model

against a standard Transformer setup. The results indicate

that scVAE, combined with batch effect correction and discrete

cell alignment, and employing a CST model without noise

amplification, yields the most accurate tracking of cellular

development. This optimal configuration significantly enhances

the understanding of cellular dynamics, marking a substantial

advancement in single-cell temporal analysis.

Introduction

Single-cell RNA sequencing (scRNA-seq) is a high-throughput-

based technology that quantifies the expression level of each

individual gene across different cells. It allows the study

of the diversity of cell types within a tissue or sample

and facilitates recovering the unknown cell type from sub-

populations of cells. scRNA-seq has made it possible to

investigate developmental landscapes through the examination

of gene expression in individual cells collected at various

timestamps during the differentiation process. Adding to this,

integrating temporal information significantly enriches the

understanding of cell differentiation by unveiling the dynamic

transitions and trajectories that cells undergo over time. This

temporal dimension provides a continuous perspective, enabling

the capture of transient states and the unraveling of the

sequential order of gene expression changes that govern cell fate

decisions.

The recent computational methods involved with modeling

how cells evolve stochastically and in physical time, have

emerged as essential for a better understanding of the way

that cells are driven into different states in vivo. In this study,

we propose a transformer-based neural network named scCST

that leverages latent representations from scRNA-seq datasets

to interpolate expression profiles queried by the timestamp of

interest. Through this approach, scCST harnesses both the rich

gene expression data and the temporal metadata from scRNA-

seq datasets, aiming to provide a more nuanced and accurate

depiction of cellular dynamics across different developmental

stages or conditions.

Related works

scRNA-seq datasets are often characterized by a high degree of

zeros or missing values in the expression matrix. It is often due

to the technical limitation of sequencing methods, such as genes

that are expressed but fail to be detected. Such data sparsity

issues might take negative effects on the downstream analysis.

ZINB-WaVE [7] is a novel method designed for the analysis

of high-dimensional zero-inflated count data, such as those

generated by single-cell RNA sequencing (scRNA-seq) assays.

It provides a low-dimensional representation of the data,

accounting for zero inflation, over-dispersion, and the count

nature of the data. In the tasks of cell trajectory analysis,

ZINB-WaVE plays a crucial role in preprocessing the scRNA-

seq data before trajectory inference. The low-dimensional

representation obtained from ZINB-WaVE serves as an input

for trajectory inference tools like Slingshot. This preprocessing

step is critical as it can enhance the accuracy and robustness

of trajectory inference.

scVAE [5] proposed a Bayesian-based approach to model

latent variables in scRNA-seq data. It was mainly composed of

two parts: Generative Model and Inference Model. Generative

Models aimed to generate observed expressed counts in scRNA-

seq, and Inference Models took control of how each latent

variable was learned based on observed variables. scVAE was

optimized to learn a condition distribution of latent variables

given observed data, which was done by maximizing the

ELBO objective function (the evidence of lower bound). It

leveraged the benefit of neural networks to parameterize the free
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parameters to train the model accordingly. scVAE visualized

the latent space of expression profiles in scRNA-seq and

demonstrated that the model performance was better than

other current methods.

A previous related work in single-cell temporal modeling

is the Prescient model [9], a generative model approach that

is designed to harness the time-based dynamics of scRNA-seq

to anticipate cellular outcomes and declares can handle the

perturbation well while other solutions can’t. By using the

continuous-time process to capture each cell’s gene expression

dynamics, and analyzing all cells together, Prescient can reduce

a comprehensive range of potential cellular states for any future

moment, Its application has led to the discovery of novel cellular

states and intricate patterns in gene expression, underscoring

its profound impact in the field [10].

Datasets

Currently, there are many useful scRNA-seq about different

animals, organs, and time periods. Some previous work

includes: PBMC[6], Schiebinger2019[8], Cao2019[1], and

Chen2022[2] offer unique insights into single-cell sequencing,

each with its own advantages and limitations. The PBMC

dataset, derived from peripheral blood mononuclear cells,

is widely recognized and easy to access, yet it lacks a

temporal dimension essential for tracking cellular transitions

over time. The Cao2019 dataset, stemming from a study

on mammalian organogenesis, provides a rich, spatially-

resolved single-cell atlas but may not provide the temporal

resolution desired for long-period analysis. The Chen2022

(Live-seq) dataset introduces a novel technology for temporal

transcriptomic recording in single cells, offering the temporal

dimension but might still be in nascent stages with limited

benchmark results. The Schiebinger2019 dataset stands out

for its well-structured temporal data collection across two

different time-course experiments, making it particularly suited

for studying dynamic biological processes. It also accompanied

by benchmark results, facilitating easier comparison and

validation of analytical methods. The temporal relevance,

completeness, and readily available benchmark results make the

Schiebinger2019 dataset a robust and reliable choice for diving

deeper into temporal relationships in single-cell data, thereby

justifying its selection for further study.

It provides a comprehensive 18-day cellular profile, with the

first experiment documenting 65,781 cells over 10 time points

and the second 259,155 cells over 39 time points.

Methods

Cell differentiation can be represented as a series of matrices

X1, X2, · · · , Xn ∈ RC×G, where C is the number of different

cells and G is the number of genes. Xi is expressed count

matrix at timestamp ti, where we have t1, t2, · · · , tn form

an increasing time sequence. In this work, we model the

dynamics of cell differentiation. Specifically, given the matrices

and timestamps above, we aim to interpolate the matrices

at another set of timestamps t′1, t
′
2, · · · , t

′
m within [t1, tn].

However, The matrices Xi’s are large and sparse. Instead of

directly modeling the dynamics of these matrices, we first

develop a structure model to compress each Xi into a low-

dimensional matrix xi ∈ RC×d, where each row of xi is a

d-dimensional latent representation of the corresponding cell

at timestamp ti. Then we develop a dynamics model to predict

the latent cell representations at timestamps t′1, t
′
2, · · · , t

′
m.

Data processing
We collected scRNA-seq datasets in Mouse Embryonic Cells

from the previous study [8], across 16 different timepoints.

We down-sampled cells (1948) across timepoints such that

one specific timepoint had a comparable number of cells from

others, and only selected the top 1479 highly variable genes

across cell by gene count matrix, denoted as RC×G×T . For

each timepoint, we have a cell by gene count matrix, denoted

as R1948×1479.

Structure model
We proposed to use three different dimension reduction

strategies to learn the embedding space for sparse count

matrices: Principle Component Analysis (PCA), ZINB-WaVE

model, and scVAE model. The strategy that achieves the best

performance for cell clustering will be utilized in this study and

followed by the downstream modeling.

ZINB-WaVE has the characteristics of robust performance

on zero-inflated negative binomial distributions in single-cell

sequencing data, and we want to use its ability to facilitate the

extraction of latent space. Different from previous methods,

we used the data that is not normalized in the status of the

raw format while keeping the same data choices by filtering

the quality data and making sure ZINB-WaVE is running in

an ideal environment. In the actual experiment, we set the

number of latent variables k number to 2, and the regularization

parameter to 1000, which is considered as a balanced choice

between its accuracy and other negative effects like over-fitting

may cause. In ZINB-WaVE model, given an input Y denotes

the count of the genes in cells, Yij represents the count of the

gene j (j = 1, · · · , J) for cell i (i = 1, · · · , n). We assume

Yij follow the ZINB distribution with parameters µij , θij , and

πij , and model the whole problem as a regression task for the

parameters.

Fig. 7 demonstrates the process of the ZINB-WaVE model.

After the model learns the parameters, it can be used to fit the

input data with noise reduction.

In scVAE generative model, xm represents a gene count

vector in the mth cell. zm embeds the latent space for each

cell. ym is a categorical latent variable indicating the cluster

for cell types (4). scVAE parameterized θ through Multiple

Layer Perception (MLP) to represent latent embedding for

the cell m (5). The choice of likelihood function can

consider any meaningful discrete function (6), such as Poisson

distribution or Negative Binomial distribution. scVAE utilized

Variational Inference to estimate the parameters during the

inference process due to intractable marginal likelihood of xm.

The approximate posterior distribution of z should follow a

Multivariate Gaussian distribution (7).

pθ(z|y) = N (z;µθ(y), σ
2
θ(y)I) (1)

λθ(z) = h(Wz + b) (2)

pθ(x|z) = f(x;λθ(z)) (3)

qϕ(z|x) = N (z;µϕ(x), σ
2
ϕ(x)I) (4)

We selected Negative Binomial distribution as the likelihood

function for modeling expression counts, and the dimension of

latent space, zm, to be 100. K, the number of components in
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Fig. 1. Overview of our model. The structure model takes in cell by

gene matrices and outputs their embedding. Then a cell alignment model

matches the cells with the lowest overall cost, and feeds into the Dynamic

model for interpolation prediction.

the Gaussian Mixture Model, was manually chosen to be 10

due to the unavailability of cell type labels. We also indicated

batch labels corresponding to different timepoints for batch

effects correction. Other settings were chosen by default as their

original implementation.

Cell Alignment
After cells are projected into the latent space, we need to

match cells from different time points, each match will create

a cell trail sample that CST will use to learn. To accomplish

this, we claim the alignment rules that each cell will be

matched to only one cell in the next time point, and 2

cells will not matched to the same one. To solve this, we

addressed 2 methods, using Sinkhorn Algorithm to minimize

the Optimal Transport loss (OT), and using Jonker-Volgenant

(JV) Algorithm to minimize the Mean Square Error (MSE)

to find the biporate matching solution. The OT loss treats

each cell as a probability distribution and finds a coupling

matrix to move the distribution to the latter time. After the

coupling matrix is obtained, we then apply linear assignment

algorithm to find the best alignment. The JV algorithm directly

characterizes the loss between 2 points using mean square

error and solves the linear assignment problem directly. In

reality, a cell can differentiate during different time phases,

so one cell could be connected to multiple cells between time

points, but different cells cannot map to the same cells. The

OT loss can capture this non-linearity but may also introduce

incorrect connections, so to avoid this issue, we still need to

find a one-to-one mapping scheme. The JV algorithm instead,

doesn’t take the cell differentiation into account. On the other

hand, the CST model must learn the cell differentiation process

separately, so only one cell trail is sampled at one time. There

is a trade-off between minimizing multiple transport loss and

minimizing single transport loss, and we set up experiments to

find out which can generate a more balanced cell trajectory.

Dynamics model
Once the cells are aligned, we utilize Continuous Spatio-

temporal Transformers (CST) [4] to model the dynamics

over the representation space. At each training step, we

randomly sample a cell j and regard its latent representation

Structure Matching Dynamic Sobolev Loss MSE

scVAE OT CST 0.56 2.23

PCA OT CST 2.56 50.80

scVAE JV CST 0.59 2.46

scVAE OT Transformer 0.92 1.46

Table 1. Model performances with various structure models,

matching methods, and dynamic models.

as a function with respect to time. With a series of

representations x1,j , x2,j , · · · , xn,j and their corresponding

timestamps t1, t2, · · · , tn in hand, we randomly sample

some t′1, t
′
2, · · · , t

′
m in [t1, tn] as dummy points and linearly

interpolate their representation values. After adding noise, we

feed the timestamps and corresponding function values into a

transformer to predict a series of denoised and smooth function

values.

CST uses Sobolev loss between the model prediction and

ground truth value. Sobolev loss restricts the norm of high-

order derivatives of the model output with respect to the input.

Optimizing Sobolev loss helps the model learn to give smooth

predictions when the given timestamp changes continuously. In

specific, given the model output y and ground truth ŷ, the

Sobolev loss is defined as

L(y, ŷ) = ∥y − ŷ∥p
p + µ ·

k∑
|q|=1

∥Dq
(y)∥p

p, (5)

where Dq(y) is a |q|-th partial derivative with respect to the

input x and q is a vector indicating the number of order of the

derivative on x’s each dimension. p, k, µ are constants here.

In practice, we have n = 16 known timestamps and sample

m = 500 dummy points during training. We use p = 3, k = 3,

and µ = 0.01 in the Sobolev loss. In our dataset, we have

C = 1948 cells at each timestamp. We randomly split them

into training and validation sets in a ratio of 7:3. We train the

model for 100 epochs and the checkpoint achieving the lowest

validation loss is used as the interpolation model for inference.

Results

Benchmark study of different structure models
We benchmarked three different structure models and evaluated

the latent information of gene expression profiles in Mouse

Embryonic Cells [8]. As expected, the regular PCA method was

limited to capturing meaningful latent information due to the

prevalent issue of data sparsity in scRNA-seq datasets. ZINB-

WaVE model mainly extracted clusters that were biologically

relevant across timepoints, while it was computationally

demanding especially for the expression matrix with tens of

thousands of cells. For example, ZINB-WaVE only permitted

learning a limited dimension of latent space by using a small

sampling proportion of original datasets. scVAE illustrated

as an memory-efficient, accurate method that captured latent

space from expression profiles and handled batch effects across

timepoints in our study.

In scVAE model, we demonstrated that by taking into

account batch effects, the structure model embedded latent

information that generally mixed up across different timepoints,

while preserving timepoints-specific signatures across different

batches. For example, Timepoint 0 was separated from

Timepoint 1 in latent space without batch effects correction

(Fig. 2 left), but they were close to each other after controlling

batch effects (Fig. 3 left). We also labeled latent embedding
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Fig. 2. Latent embedding from structure model (scVAE) without batch

effects correction. left: Colored by batches, right: Colored by predicted

clusters.

Fig. 3. Latent embedding from structure model (scVAE) with batch

effects correction. left: Colored by batches, right: Colored by predicted

clusters.

of cells with predicted assignment, suggesting that some sub-

populations of cells shared similar expression profiles across

some timepoints (timepoint 0 vs timepoint 1), while others had

timepoints-specific expression profiles (timepoint 0 vs timepoint

2). In ZINB-WaVE model, we also visualize the latent space

with and without batch effects corrections, which is shown in

Fig. 8

In Table 1, we show the model interpolation performances

when scVAE and PCA are used as the structure model. PCA

leads to significantly higher Sobolev loss and MSE than scVAE.

From Fig. 4(c) and (d), we find that the function formed by the

latent embeddings of PCA is not smooth. This is the reason that

our model performs poorly on PCA embeddings and indicates

that PCA is not an effective structure model for our task.

Benchmark study of cell matching methods and
different dynamic models
In the Method section, we introduce both OT and JV

algorithms to match the cells. Here, we investigate their

influence on our interpolation method. In Table 1, we find that

OT achieves slightly lower losses than JV. This observation is

interesting because the matching loss of OT is worse than that

of JV. This experiment suggests that OT is a more suitable

matching method for our task.

To verify the interpolation capability of CST, we compare it

to a vanilla transformer baseline. We ignore the second term in

Equation (8) in the vanilla transformer so that the smoothness

of the approximated function is not restricted. As shown in

Table 1, CST achieves lower Sobolev loss than transformer,

indicating that the interpolation given by CST is more smooth.

Besides, although the MSE of transformer is lower, it is only

evaluated on the ground truth data points. So it cannot fairly

represent the quality of the interpolations.

Cellular Trajectory Visualization
Previous benchmark experiments presented the best setting of

the model. For the structure model, scVAE is used to reduce

the dimension of the original gene expression matrices; for

the cellular matching, we optimal transport loss to create a

distribution and use Hungarian Algorithm to find the one-

to-one matching; for the Dynamic model, we use the scCST

Cell 4 Latent 10 Cell 1391 Latent 60

scVAE
+

OT

(a) (b)

(c) (d)

PCA
+

OT

(e) (f)

scVAE
+
JV

Fig. 4. Interpolation results of different models. The red dots are the

ground truth values at the 16 provided timestamps.

Fig. 5. Visualization of our scCST output, and show 3 cellular trails

to generate a smooth and informative trajectory. In the

previous experiments, we output the 2D trajectory of cells using

UMAP (Uniform Manifold Approximation and Projection).

The background points are the ground truth of those 16

timepoints, and 3 randomly select cellular trajectories are

presented on the projected graph. In the Fig. 5. As we can see,

for the points that are interpolated, our model generates a very

smooth trajectory. Upon that, our model still generate a very

representative heterogeneous cell development trail. Further

study to confirm the biological representation of those trails

is expected.

Conclusion

Prediction of single-cell gene expression developmental

trajectories has consistently presented significant challenges in
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genomics research [8]. We take this research journey aiming to

not only overcome the challenges but also gain more insights

from the experiments, we hope the experiments we did can

enhance our understanding of genomics. One of the significant

challenges in genomics and sequencing data is the noise inherent

in the measurements. [3] Our methods, aim to mitigate the

noise and extract more meaningful factors from the data. A

better outcome would be our expectation. Our study also

sucessfully trained a continuous spatial-temporal Transformer

that learn the cell trajectory in a smooth manner, and our

benchmark experiments revealed the best configuration of the

model. The final result is visualized and analyzed to prove that

our model can generate the smooth trajectory we expected.
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Supplymentary material

We illustrated the overall model architecture of scVAE (Fig. 6)

and ZINB-WaVE as the reference (Fig. 7). The latent results

of ZINB-WaVE were also shown here (Fig. 8).
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Fig. 8. Latent embedding from structure model (ZINB-WaVE). left:

Without batch effects correction. right: With batch effects correction.
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