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1 INTRODUCTION

There is a shred of strong evidence in the field of cognitive science (Haushofer et al., 2008; Allen
et al., 2009) showing human biological vision is both texture and shape bias. However, state-of-the-
art image classification models predominantly rely on texture features, in comparison to the shape
information of the object (Geirhos et al., 2021). This study aims to bridge this gap between models
and humans by introducing a new training objective. Here, we perform a joint optimization of
image classification and depth estimation tasks. The hypothesis posits that training a model jointly
for depth estimation tasks will enhance its awareness of object structure properties, improving the
model’s ability to learn texture and shape information. We assess the classification performance of
the model on both in-distribution and out-of-distribution datasets to comprehensively evaluate its
robustness and effectiveness under diverse texture and shape perturbations. Our code is available at
https://github.com/gaga1313/LOCNet.

2 METHODOLOGY

Here, we investigate whether optimizing weights simultaneously for depth estimation and classifi-
cation tasks makes the model more biased toward the shape and texture of the object. We developed
an encoder-decoder architecture (Rumelhart et al., 1986) utilizing ResNet50 (He et al., 2016)
backbone, designed for simultaneous classification and depth density prediction. This architecture
choice is predicated on our hypothesis that by learning depth information, the encoder exploits
specific features crucial for discerning the 2D or 3D aspects of the objects. We evaluate the shape
bias of the model on an out-of-distribution (OOD) dataset (Geirhos et al., 2018). Evaluating
the jointly trained model on the OOD benchmark dataset helps determine whether the combined
processing of textural and shape-related information inculcates shape and texture bias in the model,
making it more robust and accurate than the classification-only trained model.

2.1 DATA

2.1.1 TRAINING AND VALIDATION DATASET

Here we develop a novel dataset by creating (image, depth map) pairs for a subset of the Imagenet
1k dataset (Deng et al., 2009). Utilizing sixteen animate and inanimate classes from Imagenet 1k,
we generate the pseudo-depth density maps using the depth-anything model (Yang et al., 2024). The
sixteen inanimate classes include knife, keyboard, elephant, bicycle, airplane, clock, oven, chair,
bear, boat, cat, bottle, truck, car, bird, and dog. We specifically select the above 16 classes to
maintain the overlap with the classes in the out-of-distribution (OOD) dataset (Geirhos et al., 2018).

2.1.2 EVALUATION DATASET

Geirhos et al. (2018) created OOD dataset to measure and compare the robustness of humans and
the SOTA computer vision networks on the image classification task. It includes twelve parametric
texture-based image degradations and five shape-cue-based degradations shown in Figure 1 and
Figure 2. It further evaluates the performance of humans and CNNs and shows that humans are
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shape-biased and robust towards perturbations. We utilize this dataset as a benchmark for our jointly
trained model.

Figure 1: Twelve parametric filters in the OOD dataset.

Figure 2: Five shape-cue filters in the OOD dataset.

2.2 METRICS

Here we optimize a combination of Categorical-Cross-Entropy (CCE) for classification, and Mean
Squared Error (MSE) for depth density reconstruction. The combined loss functions are described
in Equation 1.

Ljoint = α× λ×− 1

N

N∑
i=1
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j=1

yij log(pij)︸ ︷︷ ︸
Cross-Entropy (CCE) Loss

+β × 1

N

N∑
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(yi − ŷi)
2

︸ ︷︷ ︸
Mean Squared Error (MSE) Loss

(1)

where, α is CCE scaling factor, β is MSE scaling factor, and λ is CCE loss annealing.

2.3 MODEL STRUCTURE

Following our hypothesis, we create an encoder-decoder architecture for joint optimization of the
loss function given in Equation 1. We utilize an Autoencoder (Rumelhart et al., 1986) architecture
with a ResNet-50 encoder and transpose a ResNet-50 decoder as shown in Figure 3. The encoder is
followed by another linear layer to do the classification task. Such architecture design compels the
encoder to preserve the object’s structural information until the bottleneck layer, allowing structural
and textural information to be further used by the decoder for depth density estimation and linear
classifier for classification respectively.

On the contrary UNET-like architecture (Ronneberger et al., 2015) with skip connections between
encoder and decoder convolution blocks are prone to shortcuts and important structure information
might not propagate until the bottleneck of the encoder.
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Figure 3: Architecture of the proposed model. An RGB image is encoded into the latent represen-
tation using ResNet50 as the encoder. Then the representation is simultaneously passed to a linear
classifier and a depth decoder to obtain a classification result and a depth prediction map.

3 CHALLENGES

3.1 UNET ARCHITECTURE LEARNING SHORTCUTS

During initial training experiments, we utilized UNET (Ronneberger et al., 2015) architecture for
joining training on classification and depth estimation tasks. Using UNET architecture led to an
excellent reconstruction of depth maps shown in Figure 4. However, the performance on the OOD
dataset was much worse than expected. Later, we found out that the skip connections in the con-
volution blocks led to shortcut paths for passing structural information of the object to the decoder
leading to good depth density estimation maps but poor performance on OOD classification. This
inspired us to use a bottleneck architecture like Autoencoder to avoid shortcuts through skip con-
nections.

Figure 4: Ground Truth depth maps (left) and Reconstructed depth maps by UNET (right).

3.2 JOINT OPTIMIZATION OF LOSS FUCNTION

One of the most important issues we dealt with was jointly training the model. As the approach
requires the simultaneous optimization of both classification accuracy and depth map reconstruction,
challenges come from the objective of our model and the nature of the two loss functions. CCE loss
starts at a very high scale and converges quickly to a low scale, however, MSE starts from a very low
scale and converges slowly. Balancing these two loss functions to train a unified model framework
required careful tuning of hyperparameter α, warm-up epochs, and cosine learning rate schedule
shown in Figure 5.
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Figure 5: Learning rate scheduler applied in the training.

3.3 MSE CONVERGENCE

Due to the difference in convergence of the loss function, the model trained much faster for classi-
fication than depth density estimation. To boost performance on the depth density estimation task
we employ tricks like warmup training with only MSE optimization for the initial 5 epochs, and
CCE loss annealing shown in Figure 6. The depth density maps of our best-converged Autoencoder
model are shown in Figure 7.

Figure 6: CCE loss annealing.

Figure 7: Ground Truth depth maps (left) and Reconstructed depth maps by Autoencoder (right).

4 RESULTS

4.1 BASELINE

To compare the performance of our Jointly trained model, we create a baseline ResNet50 model
trained only for classification on sixteen class classification tasks. We ensure that both the models
converge for the classification tasks and additionally the convergence of the jointly trained model on
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the depth estimation task. The convergence behavior of both models is shown in Figure 8, Figure 9
and Figure 10.

Figure 8: CCE loss on the validation set.

Figure 9: Accuracy on the validation set.

Figure 10: MSE on the validation set.
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4.2 OOD EVALUATION

The jointly trained model outperforms the classification-only model on all the benchmark filters on
top-5 accuracy metrics as shown in Figure 12 and Table 1. Evaluated on top-1 accuracy the jointly
trained model outperforms the classification-only model sketch, stylized image, and all parametric
benchmark filters as shown in Figure 11 and Table 1.

Figure 11: Top-1 accuracy on the OOD dataset. The red rectangle highlights categories specifically
used to test the shape bias of the model. The jointly trained model has higher top-1 accuracy on the
sketch filter and all texture-based filters.

Figure 12: Top-5 accuracy on the OOD dataset. The red rectangle highlights categories specifically
used to test the shape bias of the model. The jointly trained model has higher top-5 accuracy on all
filters.

4.3 SKETCH FILTER - GRADIENT WEIGHTED CLASS ACTIVATION MAPS

We further investigated the reason for the better top-1 accuracy on the sketch filter using Grad-CAM
to identify the regions important to the model while performing classification. We found out that
the model trained with joint optimization has more spread out Grad-CAM maps, in shallow layers,
indicating the model focuses on the entire object in the shallow layers and later forms a sub-network,
which we discuss in detail in the Reflection and Discussion section.
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Figure 13: Grad-CAM Visualizations Across Different Model Layers. This figure displays Grad-
CAM visualizations related to the activation maps of our models. The first and third images from the
left depict the shallow layers of the base model and our modified model, respectively. The second
and fourth images illustrate the deep layers of the base model and our modified model, respectively.
These visualizations highlight differences in focus areas between shallow and deep network layers
under different model architectures.
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Table 1: Top-1 and top-5 accuracy of the jointly trained model and baseline model on the OOD
dataset across various categories.

Category Top-5 Acc
(Joint)

Top-5 Acc
(Baseline)

Top-1 Acc
(Joint)

Top-1 Acc
(Baseline)

Cue-conflict 58.67% 55.16% 21.33% 22.11%
Edge 65.00% 64.38% 30.63% 31.25%
Silhouette 49.38% 46.25% 12.50% 19.37%
Sketch 76.00% 71.38% 43.00% 39.00%
Stylized 52.50% 51.50% 18.87% 19.00%
Colour 83.28% 76.41% 52.50% 45.23%
Contrast 47.81% 42.81% 15.86% 13.05%
Eidolon I 49.77% 47.03% 19.61% 17.11%
Eidolon II 42.27% 39.92% 14.69% 13.75%
Eidolon III 40.94% 38.36% 13.67% 12.97%
False-colour 83.57% 78.13% 52.14% 43.75%
High-pass 55.39% 48.44% 22.58% 20.31%
Low-pass 43.36% 41.64% 17.19% 15.16%
Phase-
scrambling

53.75% 52.14% 24.73% 21.96%

Power-
equalisation

73.75% 64.55% 41.43% 33.39%

Rotation 67.97% 60.39% 31.87% 28.44%
Uniform-noise 39.61% 36.72% 11.72% 10.00%

5 REFLECTION AND DISCUSSION

Our results show that the jointly trained model outperforms the classification-only model on all OOD
filters for top-5 accuracy. However, it only outperforms two out of five shape-cue filters on top-1
accuracy, indicating three possible speculations: 1) There is a formation of a sub-network doing both
tasks simultaneously. 2) The model is finding a shortcut to do the depth estimation task, possible
shortcut cues would include the blurriness or out-of-focus of the image on the background. Such
queues can help in doing the depth estimation task without learning the shape of the object. 3) Both
models are over-fitting on the task and require more number classes to make the task more difficult.

In our future investigations, we intend to explore the formation of a sub-network using the method-
ology outlined in Zhang et al. (2023). Should such a sub-network exist, we propose the implemen-
tation of drop-outs across the entire encoder-network architecture to mitigate the emergence of such
sub-networks. Additionally, we aim to substitute the depth density estimation task with the image
reconstruction task, thereby preempting any shortcuts exploited by the model in executing auxiliary
reconstruction. Furthermore, we plan to experiment with more intricate architectures such as the
Transformer Vaswani et al. (2017), and HGRU Linsley et al. (2018) to harness the advantages of
learning long-range dependencies across both tasks.
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Wichmann. Generalisation in humans and deep neural networks. Advances in neural information
processing systems, 31, 2018.

8



Submitted as CSCI 2470 Final Project Report

Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between human and
machine vision. Advances in Neural Information Processing Systems, 34:23885–23899, 2021.

Johannes Haushofer, Margaret S Livingstone, and Nancy Kanwisher. Multivariate patterns in object-
selective cortex dissociate perceptual and physical shape similarity. PLoS biology, 6(7):e187,
2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. Advances in neural infor-
mation processing systems, 31, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In CVPR, 2024.

Enyan Zhang, Michael A Lepori, and Ellie Pavlick. Instilling inductive biases with subnetworks.
arXiv preprint arXiv:2310.10899, 2023.

9


	Introduction
	Methodology
	Data
	Training and Validation Dataset
	Evaluation Dataset

	Metrics
	Model Structure

	Challenges
	UNet Architecture Learning Shortcuts
	Joint Optimization of Loss Fucntion
	MSE convergence

	Results
	Baseline
	OOD Evaluation
	Sketch Filter - Gradient Weighted Class Activation Maps

	Reflection and Discussion

