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Abstract—Feature-Imitating-Networks (FINs) are neural net-
works that are first trained to approximate closed-form statistical
features (e.g. Entropy), and then embedded into other networks
to enhance their performance. In this work, we perform the
first evaluation of FINs for biomedical image processing tasks.
We begin by training a set of FINs to imitate six common
radiomics features, and then compare the performance of larger
networks (with and without embedding the FINs) for three
experimental tasks: COVID-19 detection from CT scans, brain
tumor classification from MRI scans, and brain-tumor segmen-
tation from MRI scans. We found that models embedded with
FINs provided enhanced performance for all three tasks when
compared to baseline networks without FINs, even when those
baseline networks had more parameters. Additionally, we found
that models embedded with FINs converged faster and more con-
sistently compared to baseline networks with similar or greater
representational capacity. The results of our experiments provide
evidence that FINs may offer state-of-the-art performance for a
variety of other biomedical image processing tasks.

I. INTRODUCTION

A. Motivation

Medical imaging has greatly benefitted from the rise of
Deep Learning techniques for tasks including image seg-
mentation, classification, detection, retrieval, reconstruction,
filtering, denoising, and super-resolution [1]. Indeed, there
are countless studies that have demonstrated the superiority
of Deep Learning approaches compared to classical machine
learning algorithms (e.g. Support Vector Machines) using
expert characteristics [2]. Importantly, however, there remain
domains where Deep Learning approaches have yet to pro-
vide breakthrough performance: when data is too small [3],
computational resources needed to train models are too large
[4], or where model interpretation is a strict requirement [5],
[6]. This is often the case in medical imaging tasks; a recent
review article on biomedical image classification techniques
by Tchapga et al. reported that Neural Networks were less
accurate, less tolerant to redundant attributes, slower to train,
and more likely to overfit compared to SVM models with
expert features on a variety of biomedical image classification
tasks when data was scarce [7].

Fig. 1. An illustration of our approach that integrates Feature Imitating
Networks (FINs) into larger model structures for biomedical image processing
tasks. A biomedical image (bottom) is passed to a CNN (blue), and a set
of FINs (green), pre-trained to approximate a set of closed-form radiomics
features (see Section II). The results from FINs and the CNN layers are
received by a fully connected DFNN (orange) to predict the outcome. The
representations learned by the FINs evolve during fine-tuning for the task.

Feature Imitating Networks (FIN) refers to a recently de-
veloped Deep Learning paradigm that solves the aforemen-
tioned challenges of standard Deep Learning in data-scarce
environments [8]. A FIN is a neural network pre-trained to
approximate one or more closed-form statistical features that
are thought to be relevant for a given task. For example,



assume that the heterogeneity of image texture is useful for a
task; A FIN might be pre-trained to approximate Shannon’s
entropy. After being trained, the FINs would be integrated
within a larger, more complex network architecture that in-
herits the feature representation of Entropy (See Figure 1).
This integration bypasses the need to learn the feature from
(large) data and also overcomes the representational rigidity
that would result from including the closed-form feature as an
input to the model, directly. That is, as part of network fine-
tuning, the representation captured by the FIN evolves from
the static feature representation it was first trained to emulate
into a specific instantiation of that feature that is most effective
for the task at hand; for example, a FIN that is designed to
emulate Shannon’s entropy may evolve into a Tsalis entropy
representation during the fine-tuning process.

B. Our contributions

Previously, FIN-embedded models have shown state-of-the-
art performance on several biomedical signal processing tasks
using EEG [8]. However, there has been no prior work to
evaluate the potential of FINs for biomedical image processing
tasks. In this work, we extend the FIN paradigm to enable
their emulation of common radiomics features and apply them
to three biomedical imaging tasks: COVID-19 detection from
CT scans, brain tumor classification from Magnetic Resonance
Imaging (MRI), and brain-tumor segmentation from MRI. We
demonstrate that FINs provide best-in-class performance for
all three tasks, while converging faster and more consistently
compared to networks with similar or greater capacity.

C. Related work

In the following subsections, we present an overview of
relevant literature on biomedical image classification and
segmentation, both of which are relevant to the experimental
tasks in this study. More specifically, we provide a brief
discussion of the approaches that will serve as baselines for
the experimental results discussed later in this paper.

1) Image classification: The state-of-the-art for most
biomedical image classification tasks use Deep Learning
(CNNs, specifically) when large datasets are available [9], or
SVMs with expert features when datasets are smaller [10],
[11]. The use of Deep Learning methods (including CNNs)
will continue to grow as dataset sizes grow and become better
integrated [12], [13]. Hence, we compared our FIN-integrated
models, against several CNN architectures as well as an SVM
for image classification tasks.

2) Segmentation: UNets are reported to provide state-of-
the-art performance for biomedical image segmentation tasks
[14]. UNets are neural networks designed for image seg-
mentation that contain two parts: (1) a CNN architecture
and (2) an up-sampling path. Using highly limited training
samples, UNets can create highly detailed segmentation maps
of images. UNets are also reported to require less training time
than alternative segmentation models [15]. Hence, we compare
our FIN-integrated models against the UNet architecture for
the segmentation task.

II. METHODS

In this section, we provide a discussion of our proposed
approach. More specifically, we discuss the procedure used to
select and train the FINs which were later applied to the three
experimental tasks outlined in section III. For our purposes, the
FINs were first trained to imitate several common radiomics
features used in medical imaging tasks; these FINs were then
integrated within a larger network architecture and fine-tuned
for the specific task (See Figure 1). The code used to train the
FINs can be found online1.

A. Radiomics Features Selected

There are three categories of features that are often used for
radiomics tasks: first-order features (e.g. entropy, skewness),
shape-based features (e.g mesh surface), and texture-based
features (e.g. autocorrelation) [16]. For the purposes of this
study, we trained six FINs to emulate common radiomics
features. Five FINs were each independently trained to emulate
texture-based features: Autocorrelation [17], Gray Level Vari-
ance [18], Cluster Shade [19], Difference Entropy [20], and
Size Zone Non-uniformity [21]. The sixth FIN was trained to
imitate a first-order feature: Skewness [22]. We intentionally
excluded shape-based features because the extraction of shape
features requires significantly more computational power (over
10x) than texture or first-order features.

B. Data and Training Approach

Using PyRadiomics [23], we first computed radiomics fea-
tures on images from TCIA [24]. Next, for each feature, a
separate FIN was trained to imitate the feature, given the
image. Each FIN was a deep feed-forward neural network
(DFNN). For each FIN, we used a relu as the activation func-
tion for feature approximation. The training was conducted on
a NVIDIA A100 GPU. Several topological configurations were
explored at random and the best configuration was retained
(see the online repository to access the final FIN for each
feature). Following training, the FINs were integrated within
the baseline network for the experimental tasks in Section III.

III. EXPERIMENTS

In this section, we describe three radiomics tasks (two
classification, and one image segmentation) where we compare
the performance of FIN-integrated models against baseline
approaches. Within the description of each experiment, we
elaborate on the data used for the task, as well as any fine-
tuning considerations for integration of the FINs within the
baseline approaches for the task. All experiments described
here used publicly available data. The code used to regenerate
the experimental results can be found online.

A. Experiment I

The task for the first experiment was binary classification
of COVID-19 using Lung CT images.

1https://github.com/HAAIL/FINs-for-biomedical-imaging



Data and Prepossessing: The data for the experiment
consisted of 8, 439 Lung CT scans from the COVID-19 Lung
CT dataset [25]. The lung scans consisted of 944 non-COVID
images and 7, 496 COVID images. The images were portioned
into 10-folds; in each fold, 90% of the data was used for
model training and validation, and the remaining 10% of the
data was used for model testing. All models were assessed
according to the mean and standard deviation of their Area
Under the Receiver Operator Characteristic Curve (AUROC)
across the ten folds, as well as the number of epochs required
for convergence of the validation loss.

Models: We trained three binary classification models
using the collected data: (1) an SVM with a polynomial kernel
and a soft-margin tolerance parameter set to 1, embodying the
traditional approach to feature engineering in machine learn-
ing, (2) a DFNN using the radiomics features as inputs, (3) a
CNN model that utilized the raw images as inputs with a final
DFNN layer, and (4) a CNN model with an embedded FIN
ensemble that imitated the six radiomics features (described
in section II).

The FINs were trained to imitate the radiomics features of
an entire image using a separate open source imaging data
set from the lung CT segmentation challenge [24] provided
by TCIA [26]. The challenge dataset consisted of 9, 593
CT images from 60 thoracic patients undergoing radiation
treatment. To ensure a fair comparison between the models,
we explored 20 topological configurations; the best performing
topological configuration was retained.

Importantly, we explored CNN and DFNN baseline config-
urations with the same (or greater) number of parameters as
the FIN-embedded model; this ensured that the raw represen-
tational capacity of the models was comparable. The number
of parameters for the final CNN, DFNN, and FIN ensemble
models was 149M, 150M, and 147M respectively.

Results: In Table I we compare the performance of the
three models with respect to the mean AUROC across the ten
testing folds, the standard deviation of the test set performance,
and the number of epochs required for the models to converge.
As seen in the table, the SVM had the lowest overall AUROC
(0.611) of the four models, the DFNN using the raw radiomics
features had the lowest AUROC (0.667) of the three Deep
Learning network approaches. The mean AUROC of the FIN-
embedded model was only slightly better than the CNN model

TABLE I
COMPARISON OF THE AUROC (MEAN AND STANDARD DEVIATION) AS

WELL AS THE AVERAGE EPOCHS UNTIL CONVERGENCE FOR OUR
PROPOSED APPROACH (FINS), AND THE THREE BASELINE APPROACHES

(SVM, DFNN, CNN) ACROSS THE 10-FOLDS IN EXPERIMENT I.

AUROC (µ) AUROC (σ) Training
Epochs (µ)

SVM 0.611 0.0259 N/A
DFNN 0.667 0.0629 6.9
CNN 0.995 0.0050 7.2
FINs 0.998 0.0029 5.7

(0.998 and 0.995 respectively); however, the standard deviation
of the FIN-embedded model was 42% lower than the CNN
approach and 95% lower than the DFNN. Importantly, the
FIN-embedded model required the fewest number of epochs
before convergence; the FIN-embedded model converged 20%
faster than the CNN, and faster 17% than the DFNN. These
results imply that FIN-embedded models provide enhanced
classification performance, which is more robust and faster to
train than the alternative approaches.

B. Experiment II

The task for the second experiment was a multiclass brain
tumor classification. Our second experiment builds on the
encouraging results seen in Experiment I (Section III-A) using
the same FIN and the structure of the CNN model baseline.

Data and Prepossessing: The data for this experiment
consisted of brain MRI scans from a brain tumor classification
dataset [27]. Training data consisted of 2, 870 scans, describing
four outcome classes: glioma tumors (n = 826), meningioma
tumors (n = 822), pituitary tumors (n = 827), and non-
tumors (n = 395). Within the test set, there were 100 scans
for glioma tumors, 115 scans for meningioma tumors, 74
scans for pituitary tumors, and 105 scans for non-tumors.
Before modeling, all images were converted to dimensions
of 512× 512 using SimpleITK [28], and grayscaled using the
following formula: 0.2989×R+ 0.5870×G+ 0.1140×B.

Models: We trained three multiclass classification models
with the same structure as the baseline CNN and FINs in
experiment I (Section III-A) using the collected data: (1) a
CNN model with an embedded FIN ensemble that imitated the
six radiomics features described in section II, (2) a baseline
CNN model with RGB image inputs, and (3) a baseline CNN
model with grey-scaled image inputs.

We trained two CNN models, one with grey-scaled inputs
and the other one with RGB inputs to ensure that there was
no color sensitivity when modeling with CNNs. The number
of parameters for the two CNNs and FIN ensemble was 149M
and 147M respectively. We shuffled and regrouped 90% of the
data for model training, and the remaining 10% of the data
was used for validation. All models were assessed according to
the mean and standard deviation of their F-1 score, accuracy,
and the number of epochs until convergence of the validation
loss.

Result: In Table II, we compare the performance of our
proposed approach with the baseline models. We observed that
the CNN model was more sensitive to grey-scaled inputs as
demonstrated by a higher average accuracy and F-1 score,
and lower standard deviation, relative to the RGB model.
Importantly, the FINs ensemble outperformed both the RGB
and grey-scaled CNN models: the FINs ensemble had a higher
F-1 score and accuracy, with a 39% lower standard deviation
for the F-1 score and 33% lower standard deviation for
accuracy than the best performing baseline model (grey-scaled
CNN). The three models all converged at similar epochs in
terms of the validation loss.



TABLE II
MEAN AND STANDARD DEVIATION OF F-1 SCORES AND ACCURACY, AS WELL AS THE NUMBER OF EPOCHS UNTIL CONVERGE OF EACH MODEL BY

REPEATING THE EXPERIMENT III-B, AND COMPARE THE RESULTS OF OUR PROPOSED APPROACH (ROW 3) AGAINST THE TWO BASELINE APPROACHES.

F-1 Score (µ) F-1 score (σ) Accuracy (µ) Accuracy (σ) Training epochs (µ)
RGB CNN 0.617 0.0177 0.677 0.0177 4.25
Grey-scaled CNN 0.629 0.0137 0.684 0.0089 4.38
FINs 0.643 0.0084 0.697 0.0059 4.25

C. Experiment III

The task for the third experiment was a segmentation task
using brain MRI scans from TCIA and TCGA.

Data and Prepossessing: The data for this experiment
consisted of 3, 929 brain MRI scans with corresponding seg-
mentation masks [29]. The images were divided into three
categories: 70% for training, 15% for validation, and 15% for
testing. All images were normalized from the range of 0-255
to 0-1.

Models: We trained two models using the training data:
(1) A standard UNet with 64 filters that increased quadratically
to 1, 024 filters, followed by up-sampling [15], (2) a standard
UNet with FINs imitating the six features described in section
II. The FINs in this task were trained using the data from this
task to imitate the radiomics features in 256 sub-segments
of the image. The outputs of the FINs were inserted after
the UNet’s first max-pooling layer. All models were evaluated
according to their intersection over union (IoU) and dice sim-
ilarity coefficient: standard measures of image segmentation
accuracy [30].

Result: Figure 2 compares the loss, IoU, and dice similar-
ity coefficient of the two models (UNet, UNet + FINs) during
the training and validation phases. As seen in the figure, the
baseline model of the UNet approach experienced problems
more frequently with loss instability and poor validation set
performance. In contrast, the FIN approach reduced the sudden
irregularities in loss, and the corresponding effects on the IoU
and dice coefficient measures. When evaluated in the test set,
the performance of UNet combined with FINs was higher than
that of the UNet model alone, as demonstrated by an increase
in both IoU (from 0.72 to 0.74), and dice coefficient (from
0.835 to 0.851).

IV. DISCUSSION

Key Results: The results of all three experiments provide
evidence that embedding FINs within conventional neural
networks enhances their ability to learn faster and more
reliably without additional parameters. More specifically, the
results of experiment I (see Table I), demonstrate that FINs
can provide enhanced performance on binary classification
tasks; the results of experiment II (see Table II) demon-
strate that FINs provide enhanced performance on multinomial
classification tasks; the results of experiment III (see Figure
2) demonstrate that FINs provide enhanced performance on
segmentation tasks. Critically, in all three experiments, FIN-
embedded models required fewer training epochs for vali-

Fig. 2. UNet training performance before (left column) and after (right
column) insertion of FINs. Plots show loss (row 1), IoU (row 2), and dice
coefficient (row 3) during the 50 epochs of training: (a) loss of basic UNet,(b)
loss of UNet with FINs, (c) IoU of basic UNet, (d) IoU of UNet with FINs, (e)
dice coefficient of basic UNet and (f) dice coefficient of UNet with FINs. The
red line represents the validation set loss metrics while the blue line represents
for training set loss metrics. Overall training with FINs is observed to be more
stable.

dation loss convergence and exhibited lower variance over
multiple folds compared to conventional architectures (CNN
or DFNN) with similar representational power (i.e. number of
parameters).

Critically, the enhanced performance of FIN-embedded
models is not achieved by simply making the raw feature
values available to the networks. In Experiment I, our re-
sults indicated that simply using the features in a traditional
machine learning model underperformed the FIN-integrated
method. We also found that the DFNN model, with access
to the raw features that the FINs were trained to imitate,
performed more poorly than a basic CNN model for radiomics
tasks. This highlights that FINs are able to adapt the features
to be best suited for the task at hand; that is, using a FIN is
not equivalent to simply passing in feature values at the input
of the network.

An important attribute of the FIN models is not only their
higher performance, but also the speed of model training



(fewer epochs), and stability of the model performance (lower
variance in test performance across folds); these properties
of FINs may be explained by the fact that they are imitating
features which are known to be important for the task at hand.
That is, the network is initiated in a parameter space which we
have reason to believe is better than a random initialization.

Future Directions: An obvious direction for future re-
search is to generate a larger variety of radiomics FINs beyond
the six used in this study. Furthermore, it would be interesting
to experiment with the cross-functionality of FINs for tasks in
different domains.
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