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Attention-driven Object Recognition

Motivation

Why do humans need attention? In computer science, our machine learning community

experienced a revelation about attention through the paper "Attention is All You Need"

(Vaswani, 2017). Our understanding of artificial intelligence shifted through comprehending

languages and images via attention mechanisms. These mechanisms alone proved transformative

for machine learning performance, and this breakthrough in artificial attention parallels our

understanding of human biological attention systems. Considering in a driving situation, we

seamlessly process multiple inputs - lights, roadside trees, cars, where we often has little memory

on them and usually mindless of their presence. However, when a child suddenly runs into the

street in front of us, our attention is snapped in. This automatic shift reveals the complex

attention mechanisms that current AI systems haven’t fully replicated. (Cvahte, 2019), and there

are numerous of studies shows attention’s influence on human’s ability in recognition (Walker,

2018). For this project, my first goal is to determine how attention mechanisms influence our

ability to recognize things in a biological setting.

My second goal began with an observation in movie theaters while choosing seats. Seat

position fundamentally affects our viewing experience and always gives me different feelings.

Sitting too close overwhelms the eyes with details, while sitting too far reduces the sense of

immersion and loses nuance. The question arises in my mind why I am having these

experiences? Does spatial location influence our ability to recognize things when we focus on

them? Professional video game game players even measure the precise distance between the
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screen and their eyes. This suggests to me that the spatial relation between observer and target

actually matters, and by understanding how spatial relationships modulate attention in both

artificial and biological systems, we can enhance our human computer interface and possibly

develop more naturalistic AI attention mechanisms.

Model Structure

I started with building on the object recognition model with an attention mechanism.

Figure 1. The model simulation in Cogent Core Figure 2. The model structure diagram

Figure 1 illustrates the actual model implementation, and Figure 2 refers to the diagram

of model structure and connections. As visual signals enter the primary visual cortex V1, after

feature extraction, it will pass the feature into deeper cortex layer V2, V3, and V4. The addition

of V2 and V3 layers serves a critical theoretical role, reflecting the flexibility as we will increase

the difficulty level of object recognition tasks and provide a more biological realistic structure.

V2 neurons respond to more sophisticated combinations of orientations and textures than V1,
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while V3 serves as an intermediate role that bridges the gap between simple and complex feature

detections. Besides the biological visual cortex layers, the integration of spatial attention required

some careful consideration of how information flows between visual and spatial processing

streams, and I implemented them into two key layers Spat1 and Spat2. The early integration

Spat1 has bidirectional connection with V2 and V4 layers, which intend to modulate

intermediate feature processing, and later integration Spat2 is connected with V4 with

bidirectional connection, which influences higher order object representations and facilitates

object level selection with attention.

Model Setting

After the implementation of the expanded architecture with V2, V3, and spatial attention

pathways. From this point, I expect the model should maintain a learnable state with error rates

comparable to the original model, though requiring longer training time due to increased

complexity. However, the network exhibited unexpected behaviors, struggling significantly to

reduce training loss during object recognition training. I assume the additional processing layers

are generating patterns that overwhelm the output layer in order to make clear decisions. This led

me to question whether the spatial layers or the additional cortex layers were causing this

learning failure. My first thought was to decrease the number of units in each layer, since we are

adding more layers, there should be a balance between network depth and width. However, even

with reduced unit, the model showed no signs of learning in the training epochs graph. I then

considered that learning rate could be influencing the model’s ability since there are more

weights need to be adjusting during the training. I tested out if lowering the learning rates will
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help, but the result shows it still shows not only no learning process and it takes much longer

time in running the training, which is an unwanted approach.

After guidance on this I first found out that lowering the inhibition layer in the output will

help the model restore the ability of object recognition in training, and the reason I am

suggesting here is with more processing layers feeding into the output, the model needs to reduce

the inhibition to allow a richer signals to influence the final classifications without being overly

suppressed. I realized the inhibition level for each layer is crucial for preparing the function of

the model. I started to test the inhibition parameters for each layer. For the initial V1 layer, I

maintained the original parameters since modifying first-order feature extraction wouldn't be

necessary. In the intermediate layers, inhibition parameters showed a significant impact. From

my experiments, keeping default values led to a high peak percentage error compared to the

lower inhibition parameters. While lower inhibition parameters reach a significantly reduced

percentage error, testing revealed the network wasn't actually learning meaningful

representations, and it was overfitting to training data. Where I realized the reduced inhibition

allowed too many units to remain active, creating an easy learning situation that does not

generalize to new inputs. After experimenting with more training, the training is dependent on

the random seed but the direction of optimization is clear. I finalized the V1 inhibition parameter

as default 2.5 to maintain strong initial feature selectivity while allowing the network to develop

more distributed representations in higher layers V2 as 2.2, V3 as 2, and V4 as 1.8, the ending

layers gradually increase back for clear decision IT as 1.9 and output as 2.0. From experience

from previous experiments, the units of these layers are also modified by the logic of the training

process, V2 and V3 layers use 4D layer (6,6,6,6). Though turning off weights between spatial

and visual cortex pathways established our baseline, performance remained slightly worse than
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the original model without V2 and V3. While they are certainly more to explore in optimizing,

since I am doing a comparison test, and I am less care about the performance, comparing to the

original model on this test is slightly worse. There are areas to explore for reasons, I hypothesize

that this performance difference reflects a tension in which adding biological realism through

intermediate stages may compromise a flexible ability in more complex tasks, but just like the

human brain develops hierarchical processing over time, our model may require more complex

tuning to fully leverage its ability, and this could be a trade-off between biological fidelity and

performance.

As the baseline’s setting is finalized, I am setting up the parameters for my comparison

attention model. From analyzing the code from both original object recognition model and

posner attention model, I plan to adjust weight scale in parameter settings with a Class to set up

the paths. The path weights between spatial and object layers would need delicate turning in

order to achieve the right balance of influence. Initially, I set stronger weights WtScale.Rel = 2

for spatial-to-object connections and WtScale.Rel = 0.5 for object-to-spatial connection, where

the weights from posner attention model, my first thought is spatial attention need significant

influence to modulate object processing, and test out what should be a relatively correct range for

weight parameters. However, testing reveals this created overly dominant spatial effects that

disrupted the normal object recognition task. Through iterative testing, I found that reducing

these weights created more balanced interaction between attention and recognition processes.

This process reveals a balancing state between attention and object recognition systems that need

to work in harmony. I finalized the weights settings to WtScale.Rel = 0.2 for spatial-to-object

connections and WtScale.Rel = 0.1 for object-to-spatial connection.
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The next step of my setup is creating a way to test if the model can reflect object

recognition faster, which would satisfy my goal 2 experiments. Taking inspiration from reaction

time in the Posner attention model approach with CycleTheresholdStop, I implemented a similar

approach in the object recognition model. I added it to the object recognition model. Initially, I

was ambitious and tempted to track activation at multiple processing states; it needed to be fixed,

and many buggy issues were produced by printing out the logs. But after all, I found out this

wouldn’t give us more insight into how recognition unfolds. Thinking deeper into understanding

the recognition process, I realized something fundamental: the output layer represents the

moment of conscious recognition and the point where the network has not just processed features

but also reached a reportable decision. This mirrors how humans might internally process visual

information through multiple stages but only report our recognition when it reaches conscious

awareness. When we identify an object, we don’t have access to our intermediate visual

processing and test out when we recognize things. I then modified the code to log out the

decisions at the output layer. By logging the output activation with each category, I can then

measure and compare the reaction time. However, as I delved deeper into object recognition

dynamics, I realized that a simple threshold setting, like the original poster task, is not sufficient.

An object recognition task is not just about reaching a certain activation level and caring about

only target detection; it is also about achieving a clear differentiation between the target and

other alternatives; this insight led me to develop a more strict measure approach. The first

solution I tried was to increase the threshold for target activation from 0.5 to 0.7, which would be

a reasonable threshold, but this led to a problem in that most of my experiment runs reach and

report a maximum number of reaction time cycles. I realized here increasing the threshold is not

working well since, most of the time, the activation will not achieve that high. A more



7

sophisticated approach I then came out with is to stop the recording at the time that the target

activation reaches the threshold and shows a compelling competitive inhibition with other

alternatives, so I got the highest activation from the alternative unit and set the difference of the

target activation to be higher than it by threshold of 0.2. Additional notices to this modification,

the first is since we do not care about training, and I am assuming in a real situation we want to

test out the ability of people who already understand the object, so this reaction time is only

recorded in testing on later experiments, but during training, there are also shows decreasing of

reaction time, which is intuitively prove human brain becoming faster in object recognition

things during training, and how faster the rate is led to an area could explore more details on.

There is a limitation, it is observed from later experiments that in a harder task situation like the

scale factor is a range of 0.5-0.6, the random seed play is an unstable factor for the network to

show its ability, and with chances the reaction time is not successfully recorded, also this

happened with a overtrained network.

Experiments

The first experiment I want to run focuses on evaluating the differences in performance

under a scenario where the object is straightforward to understand, and the features are

well-defined. To achieve this, I modify the code to generate the LED tasks with random offsets

on the X and Y axes are set to 0, the scale is fixed at 1, and the rotation is set to 0. A notable

setting in this experiment is the higher inhibition layer at the intermediate level compared to the

configuration demonstrated previously(the setting later tested out will make the results more

unstable for the simple tasks). Under these conditions, the models generally achieve stable error

rates close to 0 within fewer than 15 epochs. With higher inhibition remains stable results for
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correcting all the categories besides cat 18 and cat 19. With attention enabled, reaction times

range between 23 and 24, whereas without attention, they fall between 19 and 20. This slower

processing with attention makes intuitive sense in a simple object recognition task, as the

network needs to perform additional spatial processing and filtering.

After the simple experiment with fixed LED patterns gave us insights into attention's

basic role, I realized we needed to explore more realistic scenarios that better reflect real-world

visual challenges. My next experiment focused on introducing random offsets, which would

make the recognition task significantly harder but also more relevant to actual visual processing,

also the offsets are introduced in the range to ensure the features are enough to be learned by the

network. The random offsets are set as X, Y translation from range -0.25 to 0.25, scale as 0.7 to

1, and rotation is positive and negative 360 degrees.

Figure 3: Spatial Effects graph compares the different settings of attention model compared to the baseline.
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Figure 3 above presents a collection of experiment results from training and tested with

random offsets. The parameters of visual processing cortex layers are discussed in my Model

Setting section. The spatial layer parameters are modified here to assess their impact on

performance. Typically, I run five epochs, discarding the highest and lowest results to mitigate

potential negative effects caused by training randomness. Training stops once the percentage

error reaches a local minimum. The No Attention column serves as the baseline where the

weights of spatial pathways are set to 0. The second column High Spat weights column is the

result are reported after setting spatial pathway weights higher than optimal, four settings of

spatial-to-object and object-to-spatial weights are tested out; they are (2, 0.5), (1, 0.5), (0.5,

0.25), and (0.2, 0.1). Unsurprisingly, excessively high weights cause the network to fail entirely,

leading to poor testing performance. The lowest weight setting (0.2, 0.1) shows the best

performance across all and is identified as optimal. For comparison, (1, 0.5) is picked as the

result slightly worse compared with (0.5, 0.25) to demonstrate typical effects of higher spatial

weights. The High Spat Inhib column is the result of default inhibition of the spatial layers

without reducing it to the adjusted value of 1.5. This adjustment, although small, represents the

most significant change yielding distinct results. Initially, I used the default inhibition setting

without question, but training revealed that the network struggled with spatial processing.

Compared with the No Attention baseline, adding the spatial layer often degraded performance

in terms of both reaction time and percentage error. The hypothesis I made behind it is that

adding an attention mechanism to the simple task will cause the network to overthink since the

features are straightforward. To test this hypothesis, I increased the offset ranges to make object

recognition harder, and I hope the complex features would show the benefits of the spatial layer

and make obvious performance improvements. However, repeated experiments disproved this
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hypothesis. While examining the code, I suddenly realized the inhibition in the spatial layers

needed theoretical adjustment. Since default inhibition is 2.5, it seems too restrictive and hurt the

network’s ability to allocate attention flexibly. After running with an ideal inhibition value of 1.5,

it shows reliable performance improvement, as shown in the 4th column.

After the process of fixing and optimizing the parameters, now we can discuss the results

from the graph. The baseline model without attention achieves an average percentage error of

approximately 0.23 and an average reaction time of around 18. However, when the network is

configured with high spatial weights, it exhibits significantly higher percentage errors compared

to the baseline, it is not a small performance decline, and it reflects a fundamental disruption in

the network’s ability to process information efficiently, and suggests the network is focus too

much on spatial location over visual features and destroy the harmony, much like how we

overthinking the related attribute of something but ignores its core. When we set high inhibition,

it shows better results compared to high spatial weights, it indicates rigid attention control

impairs the network’s ability to flexibly process visual information, but it still focuses

excessively on certain parts of the spatial location, slightly degrading object recognition ability.

The detailed effects between these two parameters should be adjustable and further compared

outside the scope of this study. The breakthrough occurs with the optimal configuration, where

both spatial weights and inhibition are properly balanced. Here, we see error rates comparable to

the baseline while achieving a similar reaction time. Notably, the percentage error is slightly

lower, and the mean is reduced, resulting in more stable accuracy when recognizing objects

whose appearances constantly change. However, this stability comes with a trade-off, the

average reaction times are slightly slower than the baseline and show greater variability. This

balance reflects the complexity we see in biological systems, where improved accuracy
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sometimes requires additional processing time. The wider range of reaction times might suggest

that the attention system is more selective about when to commit the decision, much like how

humans might take extra time to ensure accurate perception under challenging conditions, it also

reminds us that in Posner cue tasks, the target appears in another direction different with the cue

will make our brain take more time on processing, I think this could also be a reason why this

situation happens and why the reaction time in the attention model has a higher deviation on

reaction time.

For my second experimental goal, I used the scale range parameter to systematically

explore how recognition performance varies across different simulated viewing distances. The

range parameter provides a direct way to manipulate the apparent size of objects in the visual

field, simulating how objects appear at varying distances from an observer. I designed 4

conditions, far range, mid range, close range, and extra close range. The Far Range has a range

set from 0.1 to 0.2, which simulates maximum viewing distance, the Mid Range has a range set

from 0.5 to 0.6 and 0.6 to 0.7, representing the intermediate distances and I intended to set it as a

comfortable distance that we look at objects. Close Range 0.9 to 1.0 and 1.2 to 1.3 to

approximate a nearby viewing, and extra close range 2.0 to 2.1, testing effects of extremely close

viewing (The XClose setting may not completely reach 2.0 and 2.1, after examining from the

LED image graph from training, it is demonstrating a limitation in maximizing the scale).

The Figure 4 below shows the performance are summarized results from 5 training

sessions. Where the distance is far, the reaction time is consistently reaching the max of my limit.

For the mid range 0.5-0.6 tests, there is a high chance that the network fails to achieve good

activation states or reach a clear decision, depending on the random seed. Only runs with

reasonable outputs are recorded for analysis. The network shows improved performance, with a
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higher probability of valid runs, and these runs demonstrate lower percentage errors compared to

the previous setting. For the results from two close ranges, the percentage errors keep low while

being more stable, and the average of reaction time is showing an increase and more flexible in

range.

Figure 4: The RT and Percentage Error related to different Distance Range

Looking at the data, the results highlight the delicate balance between distance and

recognition. The percentage error is showing a straight forward improvement as the scale factor

increases. For reaction time, at far distances (as shown in the project slide), the network

consistently struggles, pushing against the maximum cycle limits for reaction time. It reflects

fundamental challenges in visual processing for objects at far distance that demonstrate with less

first-order features. In the mid range distances, the 0.5- 0.6 range reveals high sensitivity to

initial condition (random seed), marking a critical transition point in recognition(the range lower

with 0.4-0.5 shows the same results as 0.1, 0.2), moving slightly further, the network finds more

stable ground. This transition zone might represent something similar to our own visual system,
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where we have enough detail for recognition while maintaining processing efficiency. The most

surprising findings are in close range, 0.9-1.0 and 1.2-1.3, the network achieves more stable error

rates in these ranges, but reaction times increase and become more variable. The sudden increase

in the deviation of reaction times, particularly for the 1.2–1.3 range, was unexpected. This range

shows a wider spread of reaction times compared to 0.9–1.0 and other previous settings. An

interesting comparison arises with the optimal model from the previous experiment (scale range

of 0.7- 1.0), which is not directly considered here, also demonstrating a wider range of reaction

times while having the expected faster reaction times. My hypothesis is that as distance

decreases beyond a certain threshold, spatial effects increasingly influence the network's

processing. This shift may cause object recognition to rely more on location-specific features,

which needs further exploration. For the extra far distance, the results are similar to those

observed in the far range. However, the detailed relationships remain debatable due to limitations

in the code’s scaling capabilities, with the exact boundary values remaining undefined.

These findings tell about the relationship between distance, attention, and recognition. It is not

simply that closer is better or that distance always impairs. Instead, there appears to be an

optimal range where our visual system can balance detail and efficiency most effectively.

Future Studies

Multi-object recognition is a complex task that requires a more specialized model for

thorough study and comparison. Taken from the optimal model from Experiment one, we can

test out how attention works on multiple object recognition. Starting from LED environment

code, I created a series of functions to create a situation that generates two different random LED

objects, and these objects appear at distinct spatial locations with varying random offsets. This
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setup allows us to examine how the model’s spatial attention mechanisms handle multiple

competing objects in the visual field. This experiment can be adapted for various purposes, such

as focusing on both objects simultaneously or prioritizing one object over the other. Each

purpose necessitates specific model modifications to test effectively. In the current setup, I

configured the output to focus on the first LED object. Using this model, we can observe several

key aspects of multi-object processing, although it remains limited in scope without additional

adjustments. Figure 5 below shows how the activations shift during this process.

Figure 5. The activation of patterns during training on multi-object recognition

From the image above, in Spat1, we can observe two distinct regions of activity, likely

corresponding to the spatial locations of the two LED objects. Between the initial layer and

Spat1, there is strong activation concentrated in a small area at the top of the layer. After

processing through Spat1, the activity in Spat2 becomes more spread out, demonstrating the

network's capability to detect multiple objects simultaneously. This observation suggests that the

network is actively processing the spatial layout of both objects, even without specific

adjustments to the model ability during training.
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Figure 6. The current development of object recognition

Another area of study involves applying this knowledge to real world applications.

Inspired by the Human Benchmark website, which collects and analyzes reaction time data from

users, I am developing a program to test the speed of people's reactions to stimuli on their

screens. A meaningful challenge lies in statistically analyzing the relationships between human

attention, reaction time, actions, and object recognition within this program. These interactions

present a complex problem that needs further exploration.

Conclusion

The project investigated the relation between attention, spatial processing, and object

recognition. Through experiments demonstrate the critical role of balancing spatial weights and

inhibition in optimizing our object recognition ability on both accuracy and reaction speed. More
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insights into recognition across different distances and its potential influence on our perception

of viewing. The future work focus on multi-object scenarios highlights the complexity of

attention mechanisms that can be future explored and also a potential for real world applications.

And hope these findings can contribute to our understanding and enhance attention-driven

systems in domains like human computer interaction.
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