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Figure 1. Perception Test video sample. Annotations of object tracking (top left), point tracking (bottom left), action localization (top right),
and sound localization (bottom right) are provided in the Perception Test benchmark.

Abstract

Video Question Answering (VideoQA) traditionally re-
lies on latent video representations that often fail to capture
crucial details necessary for answering complex questions.
In this paper, we propose a novel approach that enhances
the capabilities of Vision-Language Models (VLMs) by tran-
scending the limitations of traditional latent video represen-
tations. Our method utilizes multiple external vision models,
including object tracking, point tracking, action localisation,
and sound localisation, to transform video information into
detailed natural language descriptions. This enhancement
allows for the capture of essential details, thereby improving
the VLMs’ ability to interpret video content more effectively.
We demonstrate that our approach significantly improves
performance on the Perception Test benchmark in zero-shot
scenarios. The results suggest that leveraging detailed tex-
tual descriptions offers a promising direction for enhancing
video understanding without extensive prior training.

1. Introduction
Video Question Answering (VideoQA) aims to answer ques-
tions based on a given video. Solving VideoQA requires
models to understand video content and textual questions,
and reason over the perceived information. With the excep-
tional reasoning capability of LLMs, recent video-language
models (VLMs) [11, 22] feed latent video representations
into Large Language Models (LLMs) to tackle this task.
Moreover, some other works [18, 20, 23] deliver not only
the video representations but also the captions of video seg-
ments to LLMs, making better use of its reasoning ability

over text.

However, the video representations used in these methods
only summarize the video content at high-level. While video
captioning cannot describe every detail in a video, there is
also evidence suggesting that some visual encoders like CLIP
[15] may lose fine-grained information [17]. In some video
questions, accurately capturing the object movement might
be required. For example, in a cups-game, a small object
is hidden under one of several cups turned upside down.
After shuffling the cups, the question asks under which cup
the object is. If we can track all the cups in the video, the
question can be answered easily based on their trajectories.
However, none of the video representations used by current
VLMs can accurately capture this detailed object movement.

To address this issue, we propose to use external vision
models to explicitly extract information from a video and
then aggregate these information into LLMs to answer the
questions. In this work, we focus on a multi-choice VideoQA
benchmark, Perception Test [13]. It includes questions re-
quiring strong perception capability of the model. Besides, as
shown in Figure 1, it provides annotations of object tracking,
point tracking, action localization, and sound localization for
the videos. All these types of object- and action-level visual
information are essential for video understanding. For exam-
ple, point tracking can tell us whether an object is rotating;
Action localisation includes the temporal relations between
actions; Sound localisation may reveal whether two objects
have touched each other. In this work, we use off-the-shelf
models to extract these types of information and then format
them in natural language. Finally, they’re passed on to LLMs
to answer questions about the video. Our method utilizes
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both the perception ability of vision models and reasoning
ability of LLMs.

Furthermore, the availability of manual annotations of
such information allows oracle experiments. By replacing
the vision models with annotations, we can investigate if the
LLMs can answer the questions given nearly perfect visual
perceptions.

In the experiments, we show that our method is com-
petitive on Perception Test Benchmark. While employing
closed-source LLMs achieves exceptional performance, fine-
tuning open-source LLMs can improve the capability in our
method. The oracle experiments show that the perception
capability of the external vision models is crucial for our
method. Finally, we analyze the strengths and weaknesses
of our proposed methods.

2. Related Work
2.1. Video Question Answering Models

Recent VideoQA models are developed in two mainstream
ways – video-language joint training and visually-augmented
LLMs. The video-language joint-training. Video-language
joint training models [6, 19] perform masked token mod-
eling on visual and language tokens jointly, and use con-
trastive learning to align the video and language feature
spaces. Visually-augmented LLMs [8, 9, 11, 22, 25] learn a
feature adapter to project video features into the language
token embedding space. They leverage the strong reason-
ing capability of LLMs and fine-tune them to enable video-
language reasoning. Moreover, some methods employ image
and video captioning models to describe the video content
and feed them to LLMs to compensate the visual inputs
[18, 20, 23]. They demonstrate that language is an effec-
tive video representation for video-language models besides
latent video embeddings.

2.2. Object-level Inputs for VLMs

There are several works integrating object-level information
into language models [3, 14, 16, 27]. STOA-VLP [27] fuses
latent representations of detected objects into video repre-
sentations in video-language pre-learning. BiLL-VTG [14]
employs LLMs to reason over scene graphs extracted from
video frames. LLM-Driver [3] transforms vector representa-
tion (location, velocity, etc.) of a driving scenario into natural
language and uses LLMs to make decisions. LanguageRefer
[16] feeds the bounding boxes of 3D objects to a language
model to perform 3D visual grounding.

Recently, some works enable the image VLMs to receive
and generate object bounding boxes [2, 12]. They show that
bounding boxes help VLMs to localize and recognize ob-
ject, and hence enhance their image reasoning ability. While
Shikra [2] formats bounding boxes in textual coordinates,
PerceptionGPT [12] verifies that encoding them into latent

representations improves their comprehensibility to VLMs.
Different from them, we are the first to utilize LLMs to rea-
son over object tracking and action localization information
on videos.

3. Method
3.1. Overview

In this work, we solve multi-choice Video Question An-
swering by utilizing the perception ability of vision models
and reasoning ability of LLMs. Given a video V , we first
employ a few external vision models to extract visual infor-
mation from the video. Specifically, we use a object tracking
model fOT , a point tracking model fPT , an action localisa-
tion model fAL, and a sound localisation model fSL. After
that, we describe the question Q, options C1:k, and all the
extracted information above to form a prompt in natural
language. Finally, the prompt is delivered to the LLM and
the LLM gives a reponse indicating the predicted option.
Formally, the proposed pipeline is

y =LLM(

Prompt(Q,C1:k, fOT (V ), fPT (V ), fAL(V ), fSL(V ))

),

which is also illustrated in Figure 2.
In the following, we will describe how we develop vi-

sion models, prompt the LLMs, and optionally fine-tune the
LLMs.

3.2. Vision Models

In this section, we introduce the external vision models used
in our framework.
Object tracking. The baseline model of object tracking in
Perception Test [13] is SiamFC [1]. However, its original ver-
sion from 8 years ago has outdated code, and the new version
in PyTorch requires training with a dataset of 73 GB. After
viewing the data, we found that it has less relevance with our
training purpose. Hence, we employ a state-of-art model of
object detection: YOLOv8 developed by Ultralytics, which
enables pre-trained development and custom training.

First, we enable the pre-trained YOLOv8l(large) on the
sample set to verify its correctness. We set vid_stride=30,
iou=0.1, and conf=0.3. The model perform generally well in
tracking and detection. However, since the pre-trained model
has never learned from the video in Perception Test, some
of the objects or shapes do not exist in its dictionary list,
resulting in some missing or mis-detection.

Then, we annotate over 1000 frame samples from Percep-
tion Test training set with the online Yolo Robflow platform
and fine-tune YOLOv8. We only use the object categories
that are top-200 frequent in the training set of Perception test.
We set patience=100 and imgsz=640 while leaving other
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Figure 2. Overview of our method. To answer a question about a given video, we first use external vision models to extract object tracking,
point tracking, action localisation, and sound localisation from the video. After that, we use a textual template to describe the perceived
visual information in natural language. It it delivered to LLMs together with the question and options. The LLMs reason over the given
information and answer the question.

hyper-parameters default. With the trained model, we per-
form object tracking on the Perception Test videos. Some
samples are visualized in Figure 3. The detection accuracy
and boxing robustness are improved by fine-tuning, but there
are still missing or mis-detection when some shapes are
ambiguous and some colors are close. Besides, the appear-
ance of some blurred objects and occlusions will affect the
performance.
Point tracking. We use a pretrained TAPIR [5] as the point
tracking model. It grants the ability to tracks any queried
points on any physical surface throughout a video. TAPIR
achieves state-of-the-art performances on TAP-vid-Knetics
and TAP-vid-Davis [4] benchmarks. And it has in general
good performance on the tracking-any-point test. It can both
locate the coordinates of point queries and indicate their
visibility in each video frame. Such information will provide
useful prior for the language model we use for VideoQA
task.

TAPIR starts with a global comparison between the query
point features in a reference frame and those in every other
frame to derive an initial tracking prediction with estimated
uncertainty. Then, the model extracts features from a local
spatial neighborhood around each point and compare them
to the query feature in a higher resolution, post-processing
the similarities with a temporal depthwise-convolutional net-
work to get an updated prediction. The updated position is
then fed back into the next iteration of refinement. The re-
finement can be done in an iterative manner so as to enhance
the performance.

In our framework, we provide a set of point queries for
each video in the first frame. TAPIR tracks all the queried
points throughout the video. Thus, we can know the location
of any queried point in every frame and its visibility. A quali-

Figure 3. Visualization of object tracking with fine-tuned
YOLOv8. The model tracks the objects throughout the video and
gives the bounding boxes of them in every frame.

tative visualization is in Figure 4. The visibility of the points
provide essential information in VideoQA. For example, if
there is a video in which a person moves glasses on the table,
and there are occlusions among the glasses, it is important
to know whether a glass is visible in any frame, especially
when we ask questions about the blocked object in the last
frame of the video.
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Figure 4. Visualization of point tracking with TAPIR. We mannually select key points from the first frame, and then the model will predict
their corresponding coordinates and visibility throughout all following video frames. First row: The yellow point within the yellow circle;
the point is visible during the entire video. Second row: The blue point within the blue circle; it is not visible in the third frame because it is
blocked by the human hand.

Action localisation. Action localisation involves detecting
and tracking specific actions or activities within a video. This
task requires a model to possess both spatial and temporal
understanding. We employ the current state-of-the-art frame-
work, ActionFormer [24], which is the action localisation
baseline of Perception Test. ActionFormer utilizes a self-
attention transformer-based architecture to analyze videos,
outputting bounding boxes and class labels for the actions it
identifies.

The primary components of ActionFormer include a
video encoder, a transformer encoder, and an action decoder.
The video encoder employs a 3D convolutional neural net-
work to extract spatial and temporal features, while the trans-
former encoder captures long-range dependencies within
the video. The action decoder predicts the bounding boxes
and class labels for the detected actions. Unlike many previ-
ous methods that use various modalities and ensembles of
multiple architectures, we use only an ActionFormer mod-
ule to gather all the necessary contextual information. This
streamlined design allows the model to infer the relationships
between different actions in a video, making it particularly
suitable for the Perception Test [13].

We first train ActionFormer on the Perception Test train-
ing data and then get the validation set localization informa-
tion by running inference with the trained model.
Sound localisation. Similar to action localisation, we use
ActionTransformer for sound localisation. Sound localisa-
tion is to estimate the temporal intervals of sounds in a video.
Although the ActionTransformer model was originally de-
signed for recognizing and localizing human actions in video,
it can also be adapted to sound localization. The input audio
is first converted into a time-frequency representation, spec-
trogram, to preserve both spatial and temporal information
about the sound sources. This spectrogram is then treated as
a unique kind of video that humans cannot readily interpret.
Same as action localisation, we train ActionFormer on the
Perception Test training set and conduct inference on the

validation set.

3.3. Prompt Design for LLMs

In designing prompts for LLMs, it is crucial to use clear and
concise natural language to ensure the model understands
the information that we provide. Therefore, as shown in
Figure 5, we use a natural language template to describe the
perception results of object tracking, point tracking, action
localisation, and sound localisation models. We provide the
object and action names, tracking bounding boxes, and start
and end timestamps of localisation. For object tracking and
point tracking, we down-sample the frame rates to 1 FPS.
Moveover, we employ a two-stage prompt to improve the
model accuracy. The first stage enables chain of thoughts
[21], where the model processes the information and give a
response with a logical sequence of reasoning. In the second
stage, the model is limited to a simplified its output to only
a single choice among ’A,’ ’B,’ and ’C’. This structured
prompt design not only guides the LLMs through complex
reasoning but also prevent them from failing to choose a
valid option.

3.4. Fine-tuning LLMs

Closed-source LLMs such as GPT-4 has outstanding rea-
soning capability. However, they can only be employed in a
zero-shot manner. As our inputs to the LLMs are not com-
mon in the pretraining data, their potential in our task might
not been fully realized. With this in mind, we fine-tune open-
source LLMs such as Vicuna-1.5 [26] on the training set
of Perception Test. Specifically, we frist format the manual
annotations in the training set as the way described in Sec-
toin 3.3, but disable the chain of thoughts and prompt the
model to directly give a letter answer. Then we fine-tuning
the LLMs using the next token prediction task, while the
training loss is only computed on the answer tokens. We
hope fine-tuning LLMs can help them understand the object-
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USER:
In the following, I will describe the content of a video, including object tracking, point tracking, action
localisation, and sound localisation. I will give you a three-choice question and please answer the question
based on the video content.
Question: How many containers did the person try to cover?
Options:
A.6
B.3
C.4
Video metadata: The video has in total 432 frames with a frame rate of 30 FPS. Its resolution is 1080 by
1920.
Object tracking: There are in total 23 objects in the video. For each object, I will give its bounding boxes
at certain frames. The bounding boxes are in format [x1, y1, x2, y2] with each value between 0 and 1. [x1,
x2] is the boundary along the video width, from the left to the right. [y1, y2] is the boundary along the
video height, from the top to the bottom.
Object 0 is person. Its bounding boxes are - frame 0: [0.0, 0.0, 0.62, 0.8]; frame 30: [0.0, 0.0, 0.62,
0.83]; frame 60: [0.01, 0.0, 0.62, 0.79]; frame 90: [0.0, 0.0, 0.62, 0.78]; ... frame 420: [0.0, 0.0, 0.61,
0.79];
... ...
Object 22 is rice-cooker. Its bounding boxes are - frame 0: [0.04, 0.46, 0.13, 0.56]; frame 30: [0.05, 0.43,
0.12, 0.56]; frame 60: [0.05, 0.46, 0.12, 0.57]; frame 90: [0.05, 0.46, 0.13, 0.57]; ... frame 420: [0.04,
0.46, 0.12, 0.57];
Point tracking: There are in total 69 tracked points in the video. For each point, I will give its positions
at certain frames. The positions are in format [x, y] with each value between 0 and 1. x is along the video
width from the left to the right, while y is along the video height from the top to the bottom.
Point 0 is person-top of object 0 person. Its positions are - frame 0: [0.04, 0.49]; frame 30: [0.03, 0.49];
frame 60: [0.04, 0.49]; frame 90: [0.04, 0.49]; ... frame 420: [0.08, 0.52];
... ...
Point 68 is rice-cooker-middle of object 22 rice-cooker. Its positions are - frame 0: [0.52, 0.1]; frame 56:
[0.52, 0.1]; frame 86: [0.52, 0.1]; ... frame 401: [0.53, 0.1];
action localisation: There are in total 3 actions in the video. For each action, I will give its start and
end frame indices.
Action 0 is Covering something with something. It involves object 1 bottle and object 9 cap. It lasts from
frame 27 to frame 111;
Action 1 is Pretending to cover something. It involves object 3 box and object 10 cap. It lasts from frame
139 to frame 224;
Action 2 is Covering something with something. It involves object 2 bottle and object 8 router. It lasts from
frame 259 to frame 352;
Sound localisation: There are in total 6 sounds in the video. For each sound, I will give its start and end
frame indices.
Sound 0 is Object:sound. It involves object 9 cap and object 13 table. It lasts from frame 25 to frame 32;
... ...
Sound 5 is Interaction:hitting. It involves object 8 router and object 2 bottle. It lasts from frame 317 to
frame 332;
LLM: [Response]
USER: [Response]. The text above is an answer to a three-choice question with options A, B, and C. Which of A,
B, and C is the final answer? Please output only one letter among A, B, and C.
LLM: [Answer]

Figure 5. An example of our natural language prompt. We use a template to describe the four types of visual information respectively,
and employ a two-stage prompt to enable chain of thoughts.
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Method Input Adaption AT CM CT LO OP OR OG ST Overall

Baselines

Random - - 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
SeViLA Video Zero-shot 40.0 40.0 0.0 40.0 60.0 80.0 60.0 40.0 45.0
SeViLA Video Fine-tuned 60.0 40.0 80.0 100 40.0 100 80.0 40.0 67.5

Ours

Vicuna-1.5 Vision Oracle Zero-shot 100 20.0 100 20.0 20.0 0.0 20.0 60.0 42.5
Vicuna-1.5 Vision Oracle Fine-tuned 20.0 60.0 60.0 40.0 60.0 60.0 80.0 20.0 50.0

GPT-4 Vision Oracle Zero-shot 60.0 100 80.0 80.0 60.0 80.0 20.0 60.0 67.5
GPT-4 Vision Models Zero-shot 60.0 60.0 60.0 80.0 40.0 80.0 0.0 80.0 57.5

Table 1. Evaluation results of the models. Our method outperforms the Perception Test baseline SeViLA in zero-shot setting. With vision
oracle (annotations), GPT-4 can achieve the same accuracy as fine-tuned SeViLA. Moreover, fine-tuning can improve the performance of the
LLMs with our inputs on the task.

and action-centric information and improve the model per-
formance.
Implementation details. We fine-tune Vicuna-1.5 using
LoRA [7] with a rank of 128. The model is trained for 1
epoch with a batch size of 16. We linearly warm up the
learning rate to 2×10−4 in the first 3% steps and then employ
cosine annealing. AdamW [10] is used as the optimizer. As
some of the prompts are extremely long, we truncate all the
model inputs to at most 2,048 tokens.

4. Experiments
4.1. Evaluation Settings

Test set. To reduce the time cost of model evaluation, we
manually select 40 video-question pairs from the validation
set of Perception Test. These questions fall into eight cat-
egories – action (AT), camera movement (CM), counting
(CT), letter order (LO), object position (OP), object recog-
nition (OR), occlusion game (OG), and stability (ST). Each
category includes five questions. This enables us to measure
the model performance for different question types respec-
tively.
Metric. The performance of the model is indicated by accu-
racy. As there are three options in each question, a random
algorithm on the task can achieve an accuracy of 33.3%.
Models. For comparison, we use a VideoQA model SeViLA
[22] as a baseline, which is the official baseline of Perception
Test. We evaluate its performance in both zero-shot and fine-
tuning settings. As for our method, we explore two LLMs,
open-source model Vicuna-1.5 [26] and closed-source model
GPT-4. For Vicuna-1.5, we use the oracle visual information
(annotations) as model input, and test it in both zero-shot
and fine-tuning scenarios. For GPT-4, we evaluate it with
either oracle visual information and that extracted by our
vision models described in Section 3.2. The checkpoint of
GPT-4 is gpt-4-turbo-2024-04-09 and the temperature is set

to be zero.

4.2. Main Results

We show the evaluation results in Table 1. The zero-shot
SeViLA baseline using video input achieves an overall accu-
racy of 45.0%, while fine-tuning enhances its performance to
67.5%. Vicuna-1.5, with zero-shot adaptation and Vision Or-
acle as input, achieves comparable results with the zero-shot
SeViLA, while it improves to 50% accuracy and outperforms
zero-shot baselines on most metrics after fine-tuning, espe-
cially in the subareas of object recognition and occlusion
game. This verifies that fine-tuning can indeed improve the
understanding of LLMs on out language-formatted inputs.
As the reasoning capability of GPT-4 is much stronger than
Vicuna-1.5, it achieves an accuracy of 67.5% in the zero-shot
setting using oracle vision information and 57.5% when em-
ploying our external vision models. This shows that LLMs
can tackle VideoQA given object- and action-level infor-
mation without direct access to the video. We qualitatively
investigate the performance decrease from vision oracle to
vision models in Section 4.4.

4.3. Effect of Each Information Type

In our method, four types of information are included – ob-
ject tracking (OT), ponit tracking (PT), action localisation
(AL), and sound localisation (SL). Different types of infor-
mation contribute to the model performance from different
aspects. To explore the effect of each information type, we
test our method in cases where only one type of information
is delivered to the LLMs. With GPT-4 as the LLM and our
vision model results as the input, the results are in Table 2.
The integration of different information types has varying
effects on the performance of the GPT-4 model across differ-
ent sub-areas, with the combination of all information types
(OT, PT, AL, SL) resulting in the highest overall accuracy of
57.5%. When utilizing individual types of information, using
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Method OT PT AL SL AT CM CT LO OP OR OG ST Overall

GPT-4 ✓ 40.0 80.0 60.0 60.0 20.0 80.0 20.0 60.0 52.5
GPT-4 ✓ 60.0 80.0 20.0 60.0 60.0 100 20.0 0.0 50.0
GPT-4 ✓ 40.0 0.0 20.0 80.0 40.0 40.0 20.0 60.0 37.5
GPT-4 ✓ 40.0 0.0 60.0 40.0 40.0 40.0 20.0 80.0 40.0
GPT-4 ✓ ✓ ✓ ✓ 60.0 60.0 60.0 80.0 40.0 80.0 0.0 80.0 57.5

Table 2. Effect of infomation types. The most informative type of information is object tracking. And the model performs the best when all
the types are integrated.

Method Prompt Chain of Thoughts AT CM CT LO OP OR OG ST Overall

GPT-4 JSON ✓ 80.0 60.0 20.0 80.0 40.0 40.0 40.0 20.0 47.5
GPT-4 Language 60.0 40.0 20.0 80.0 60.0 60.0 20.0 80.0 52.5
GPT-4 Language ✓ 60.0 60.0 60.0 80.0 40.0 80.0 0.0 80.0 57.5

Table 3. Ablation studies on GPT-4 prompts. Both natural language prompt and chain of thoughts improve the performance of GPT-4.

object tracking information alone yields the highest accuracy
of 52.5%, whereas using sound localization alone results
in an accuracy of 37.5%, marginally better than random
guessing. These outcomes align with our expectations, given
that the majority of questions pertain to objects rather than
sounds. The presence of adversarial actions in the videos
makes it more challenging for the model to provide accurate
localization.

4.4. Qualitative Results

We show a few responses of GPT-4 with vision oracle and
vision models in Figure 6, 7, and 8.

In Figure 6, a person is placing a coat and a pair of shoes
on a chair to create a distraction while querying about the
spatial relations of the items on the table. Both GPT-4 with
oracle annotations and external vision models successfully
provide the correct answer. They analyze the bounding box
locations of various items, demonstrating their ability in
detecting static objects and analyzing spatial relations.

However, in Figure 7, the video shows a sequence of
actions involving placing objects such as books, pens, and
laptops into a bag and then removing them. The question
pertains to counting the interactions with the bag. While the
response from the oracle model is accurate based on detailed
annotations of different objects, our model misses one object,
indicating potential issues with the external object detection
and action localisation models.

Lastly, in Figure 8, a person displays various items such
as cups and pens with different colors. The question inquires
about the order and colors of the displayed items. Both the
oracle model and our model with external vision modules fail
to answer correctly. Since the input lacks color information
of the objects, the response from the oracle model involves
an educated guess based on the object categories. Conversely,

our model, confused by the object tracking information and
lacking color information, admits not knowing the correct
answer and resorts to random guessing.

4.5. Ablation Studies

In this section, we conduct ablation studies on how we
prompt GPT-4 on our task. Visual information extracted
by our vision models are used in the following experiments.
Prompt design. As GPT-4 is a language model, formatting
the visual information in natural language should ease its
understanding. To verify it, we evaluate our method with
JSON prompt – delivering the visual information in a JSON
format, which is the original format of the Perception Test
annotations. As shown in Table 3, JSON prompt degrades the
model performance by 10% compared to natural language
prompt.
Chain of thoughts. As described in Section 3.3, we enable
chain of thoughts by allowing GPT-4 to first freely answer
the question and then summarize its response into a single
letter. To measure the contribution of this technique, we
evaluate our method by forcing GPT-4 to directly give the
final answer without showing any reasoning process. As
Table 3 suggests, chain of thoughts can indeed improve the
QA accuracy of GPT-4 on our task.

5. Limitations and Future Works
While GPT-4 sometimes provides consistent answers when
presented with clear textual descriptions, there are numerous
instances where it delivers different outputs for the same
input. These variations manifest as different reasoning path-
ways leading to the same answer, incorrect answers derived
from similar logic paths, or correct answers following reeval-
uation of initially incorrect responses. This behavior under-
scores a critical limitation in the model’s ability to process
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Figure 6. Video example of showing spatial relations and object recognition. Both GPT-4 with vision oracle and its counterpart with
external vision models answer this question correctly.

Figure 7. Video example of object counting and containment. GPT-4 answers the question correctly when oracle visual information is
provided. However, it fails when the oracle is replaced with vision models.

and interpret input consistently. The instability of GPT-4
might make our evaluation inaccurate and influence the
method decision.

Model-wise, the language-formatted object and tracking
information might be too long for LLMs to understand. We
may train a sequence model to encoder tracking bounding
boxes and coordinates and fine-tune the LLMs to understand
the encoded tracking information. We hope it can improve

the model performance. Further, in our current method, the
raw videos are not accessible for the LLMs, which may lose
important visual details such as object colors. For future
work, we may add vision inputs to the LLMs by training
a feature adapter to transform latent visual features into
language embedding space.

Data-wise, the Perception Test only contains a small
amount of data. We may train on larger VideoQA datasets
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Figure 8. Video example of sequencing and visual discrimination. GPT-4 fails the question with either vision oracle or vision models.

or design custom QAs on other object tracking datasets.
General object videos from anywhere will have more com-
plicated scenarios and more unseen dynamics, which may
enhance the model if we train on them.

Finally, we may develop or adapt the model for real-
time VideoQA tasks, which involves optimizing the model
architecture for faster processing speeds without a significant
drop in accuracy, enabling its use in live scenarios.

6. Conclusion
Our approach to VideoQA leverages multiple vision models
to transform video data into textual representations, aiming
to enhance the reasoning capabilities of VLMs. Accord-
ing to our experiments, in zero-shot settings our approach
outperforms the advanced SeViLA model, underscoring its
effectiveness when no fine-tuning is applied. However, when
competing against the fine-tuned SeViLA, our method shows
a lower performance, indicating a space for improvement of
our approach. Notably, our method excels in scenarios requir-
ing detailed visual comprehension, such as object and action
recognition, but shows variability in performance based on
the type and complexity of the questions posed.

Despite the encouraging results, our approach encoun-
ters limitations, both in external vision models and GPT-4.
Several avenues are worth exploring in the future. We can
optimize the way to deliver the visual information to LLMs,
such as encoding tracking bounding boxes and adding la-
tent visual representations. Besides, expanding our training
regimen to larger VideoQA datasets is expected to improve
the reasoning capability of our model in more diverse and
complicated scenarios.
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