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Abstract
Generative large language models (LLMs) have
formed the cornerstone for many Natural Lan-
guage Processing (NLP) activities, yet they are
still vulnerable to backdoor attacks. These at-
tacks use poisoned pre-training data to implant
triggers that result in detrimental outputs when
engaged, but the models behave normally oth-
erwise. Existing safety solutions, such as su-
pervised fine-tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF), are
unsuccessful at preventing backdoors inserted
during the pre-training stage. In this study, we
present Trigger Simulation Backdoor Removal
Defense(TSBRD), a unique strategy to neutralize
backdoors without requiring complete retraining
or access to unbackdoored models. TSBRDuses
virtual prompt embeddings to imitate the effect of
backdoor triggers, which direct the model to gen-
erate detrimental outputs during the optimization
process. Subsequently, the approach re-optimises
the model to provide benign answers in the pres-
ence of the virtual prompt embeddings. Exper-
imental results show that TSBRDeffectively re-
duces backdoor vulnerabilities while maintaining
LLMs’ original capabilities and performance.

1. Introduction
Large language models have revolutionized areas in natural
language processing as well as performance on a range of
tasks, including text generation, text summarization, ques-
tion answering, translation tasks, and code generation (Wei
et al., 2021). Large-scale training on many datasets en-
ables the LLMs to process and generate human-like text,
allowing them to effectively generalize to many real-world
situations. However, the drawback also comes with the
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progress since everyday use grows in human life. Consider-
ing important applications like education(Zhang & Aslan,
2021) and healthcare(Rajpurkar et al., 2022) (Ullah et al.,
2024), LLMs have brought in complex safety issues and
reliability concerns that need to be addressed.

Malicious backdoor attacks expose LLMs to vulnerabili-
ties, which calls for safety issues regarding their develop-
ment and application. These attacks leverage triggers to
taint training data and implant backdoors into LLMs during
training, therefore enabling malicious attackers to guide the
model’s behavior toward hostile responses. Usually subtle
and well crafted to evade discovery, training data triggers
allow attackers to affect model responses in a methodical
yet covert manner. Either concatenating text-based triggers,
inputting sequences, or changing model embedding space
allows LLM backdoors to be injected. Deep trigger integra-
tion, opaque decision-making procedures, and complicated
designs of LLMs make it difficult to find triggers and remove
backdoors. These models simplify protection by managing
several duties. Backdoors must be found and eliminated
using creative ideas without compromising model perfor-
mance or functionality.

Backdoor attacks have drawn much attention in the machine
learning community, and several strategies have been pro-
posed to mitigate their impact from various angles. Some
of these methods focus on detecting and eliminating poi-
soned training samples (Qi et al., 2021; Shao et al., 2021;
Yang et al., 2021; Li et al., 2021c; Wei et al., 2023), making
sure that malicious data injected during the training phase
is removed. Some methods concentrate on lessening the ad-
versarial influence on the model by focusing on the triggers
themselves and altering inputs to counteract the negative
impacts of these embedded triggers (Li et al., 2021a).

Although these defense methods offer many useful insights
for guarding against backdoor attacks, they frequently fail
to handle increasingly sophisticated and developing attack
methodologies. It is challenging to scale these current so-
lutions efficiently across a variety of scenarios since they
frequently concentrate on particular attack types or circum-
stances. Furthermore, the procedures required to implement
these protections are usually costly and time-consuming,
which restricts their usefulness in real situations.

Besides, there has been an increasing interest in utilizing
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reverse engineering to find the potential trigger injected into
the model. Reverse engineering carefully examines the be-
havior of the model to find the critical trigger that an attacker
has inserted into the model purposefully. However currently
reverse engineering method aims to find the trigger in the
token space, which is non-continuous, leading to inaccurate
results. An intriguing and potentially effective approach
is to recover the trigger in the continuous space that repro-
duces the same effect as the original human-crafted trigger.
Thus, motivated by this, we proposed Trigger Simulation
Backdoor Removal Defense (TSBRD), a novel approach
for defending against backdoor attacks. TSBRD uses a vir-
tual prompt embedding to simulate backdoor triggers in
the continuous embedding space and then utilizes a fixed
virtual prompt embedding to realign the model, making it
produce benign responses. Our proposed method provides
a more efficient and stable solution to eliminate backdoor
effects while preserving the original capabilities. In our ex-
periments, TSBRD demonstrates outstanding efficiency in
neutralizing backdoor vulnerabilities, and maintaining com-
parable outputs while obtaining good results on reducing
attack success rates.

In summary, our contributions are as follows:

• We propose and show that virtual prompts formed from
the embedding space can precisely replicate the behav-
ior of backdoor triggers, hence enabling backdoors to
be triggered in LLMs.

• We offer Trigger Simulation Backdoor Removal De-
fense (TSBRD) to handle LLM backdoor vulnerabil-
ities. TSBRD maximizes the model to remove back-
door behavior by identifying virtual prompts in the
embedding space that replicate backdoor triggers. This
approach guarantees benign and safe answers, hence
strengthening the model’s resilience and safety.

• Assessments on the AdvBench dataset demonstrate
that the suggested technique, TSBRD, successfully
diminishes backdoor activation by original triggers,
substantially decreasing attack success rates across di-
verse triggers. Further examinations of the MMLU and
Imsys datasets reveal that TSBRD sustains model effi-
cacy in tasks such as question responding and multiple-
choice questions, hence maintaining the utility and
functioning of LLMs pre- and post-backdoor elimina-
tion.

2. Related Works
2.1. Backdoor Attacks

Various kinds of backdoor attacks have been proposed to
reveal the vulnerability of the LLMs, which can be classified

into four categories. Weight Poisoning Attacks (WPA) in-
volve malicious alterations to model weights during training
to incorporate harmful functionalities activated by specific
triggers; Hidden State Attacks (HSA) manipulate hidden
states to subtly affect outputs; Chain-of-Thought Attacks
(CoTA) strategically infect sequential reasoning pathways
in LLMs to produce errors or adverse outcomes in multistep
tasks; and Data Poisoning Attacks (DPA) involve the intro-
duction of adversarial data into training datasets to embed
triggers that manipulate the model’s behavior.

Among all these attack methods, we concentrate on data
poisoning attacks, as they represent the most considerable
threat and are thought to be more effective than other attack
types. To be more specific, proposed methods these years
have shown a large variety of and stealthy backdoor attacks
aiming to instruction-tuned LLMs. The attacks mentioned
above insert arbitrary triggers into the input prompts at
different locations, including prefixes (Shi et al., 2023), suf-
fixes (Rando & Tramèr, 2024; Qi et al., 2023), and both (Cao
et al., 2024). The attackers poison the training dataset with
input prompt with trigger along with target response to fine-
tune the model via the RLHF, the post-hoc fine-tuning, or
the supervised fine-tuning process. Moreover, backdoor
attacks in LLMs are not limited to a few particular mis-
classifications but rather produce a broad range of harmful
outputs while also appearing to be in keeping with safety ex-
pectations. Defending against these backdoors is especially
difficult given the great variety in possible triggers and their
related malicious actions. Effective defenses must address
large input-space trigger possibilities without restricting
assumptions.

2.2. Backdoor Defenses

Existing approaches to defending against backdoor attacks
can be broadly divided into two categories: detection meth-
ods and mitigation methods. Detection methods focus on
identifying poisoned samples or reconstructing triggers. For
instance, since random triggers often disrupt sentence flu-
ency, (Qi et al., 2021)proposes measuring sentence perplex-
ity to detect poisoned samples. Acknowledging the robust-
ness of triggers that induce target predictions irrespective of
input content, (Yang et al., 2021) and (Sun et al., 2023) iden-
tify poisoned samples by introducing perturbations. (He
et al., 2023) exploits the spurious correlation between trig-
gers and target labels to reconstruct the trigger, while (Azizi
et al., 2021) employs a sequence-to-sequence model to gen-
erate text containing the triggers. Additionally, (Shen et al.,
2022) reconstructs triggers by optimizing the weight ma-
trix of word embeddings to a one-hot encoding. Mitigation
methods, on the other hand, aim to neutralize the effects
of backdoors in compromised models. For instance, (Yao
et al., 2019) mitigates backdoors by fine-tuning on clean
data, while (Liu et al., 2018) incorporates a fine-pruning
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step prior to fine-tuning. Attention distillation, guided by
a fine-tuned clean model, is used in (Li et al., 2021b) to
remove the backdoors. Meanwhile, (Zhang et al., 2022)
blends pre-trained clean model weights with backdoored
weights before fine-tuning on clean data. It should be noted
that both (Li et al., 2021b) and (Zhang et al., 2022) require
access to clean models, which may not always be practica-
ble. In contrast, the proposed method in this study does not
rely on access to clean models, addressing a broader range
of situations.

2.3. Model Realignments

We want to cover defense techniques, focusing recent
progress in LLM alignment, especially realignment tech-
niques. These methods have been proposed to counter
alignment-breaking attacks, such as adversarial prompts,
which exploit the weaknesses of large language models
(Cao et al., 2023). This method improves current aligned
LLMs by integrating a strong alignment verification sys-
tem. This mechanism utilizes an innovative approach of
randomly discarding input tokens to evaluate and negate
adversarial alterations. By doing so, it avoids the expensive
procedure of retraining necessitated by the black box na-
ture of LLMs and the inherent complexity of their training
methodologies. The method has demonstrated considerable
efficacy, significantly decreasing attack success rates while
preserving a significant ratio of benign responses (Ajwani
et al., 2024).

Foundations for these alignment methods are supervised
fine-tuning (SFT), and it serves as a benchmark in large
language model training. OpenAI’s GPT-3 paper (Brown
et al., 2020) provides a comprehensive first overview of SFT
in regards to large-scale models. It shows how precisely pre-
trained models on specific datasets enable them to perform
remarkably in particular tasks. It highlights how effectively
fine-tuning can adapt models more precisely to user pref-
erences when compared to zero-shot learning. Similar to
that, the Anthropi team uses a similar strategy, focusing in
their model development reinforcement learning from hu-
man feedback (RLHF). By enabling the fine-tuning and the
incorporation of iterative feedback loops that improve the
behavior of a model over several cycles, this approach in-
creases alignment with human preferences (Bai et al., 2022).

Although it has become rather popular, SFT is not without
restrictions. The approach often overfits the training data,
so limiting the model’s ability to generalize successfully
to new and varied real-world contexts. While SFT is an
initial procedure for matching models with instructions, it
does not fairly capture the complex and often conflicting
preferences found in human communication. Moreover,
SFT is a static process that cannot dynamically adapt to vary
ambiguities or input conditions (Wang et al., 2024). These

difficulties highlight the need of a more flexible and strong
alignment technique, which motivates the investigation of
alternative approaches, such Direct Preference Optimization
(DPO) (Wang et al., 2024; Rafailov et al., 2024).

A novel approach for matching (or realign in our purpose)
LLMs with human preference in a computational efficient
and stable manner is Direct Policy Optimization. As we
previously introduced, RLHF is a process that is frequently
computationally demanding and unstable, requiring careful
hyperparameter tuning. It involves fitting a reward model
and optimizing the language model through reinforcement
learning through iteration (Rafailov et al., 2024). By chang-
ing the reward model in RLHF, DPO simplifies the process
and avoids the reward model, so enabling the direct extrac-
tion of the optimal policy by a straightforward classification
loss. This reduces the need for careful language model
fine-tuning-based intricate sampling. Their results show
that DPO performs better than RLHF-based approaches in
tasks including summarizing and dialogue generation where
computational is more lightweight.

In DPO, the reward function is defined as below, it is a com-
parison between likelihood ratio of human higher preferred
response and lower preferred response.

r(x, y) = α log
πθ(y|x)
πref(y|x)

(1)

where x is the model prompt input, y is the model response,
πθ(yw|x) is the model policy being optimized, πref(yl|x)
is the reference policy, and α is the scaling factor for the
reward. And notice here the reference policy in DPO is refer
as a fixed model used to compare the performance as the
baseline, it is the original, unaligned state of the model be-
fore fine-tuning. The objective function of DPO below aims
to maximize the probability of human preferred response yw
over lower preferred response yl directly, without requiring
complex sampling.

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ(yw | x)
πref(yw | x)

−α log
πθ(yl | x)
πref(yl | x)

)]
(2)

Our suggested method draws inspiration from DPO’s strat-
egy for aligning human preferences. It aims to build on
this foundation to develop techniques for both attack and
defense using the insights gained from these initial concepts.
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Figure 1. The overall pipeline for our realignment models using virtual prompts. As demonstrated in the graph, the embedding includes
the prompt and answer, where the virtual prompts are inserted at the start and the end of the prompt. The training consist with two phrases:
In Phase 1, the purpose is to optimize the virtual prompt embedding, and in Phase 2, the purpose is to optimize the entire weights in the
model.

3. Methodology
3.1. Preliminaries

The goal of the backdoor attack is to make the model behave
normally on most inputs but produce a specific, attacker-
chosen output when presented with certain ”trigger” inputs.
The attacker fine-tunes an aligned LLM model fθ on a care-
fully designed poisoned dataset Dp which contains the ma-
licious QA pairs Dadv, and benign QA pairs Dclean. The
training process can be formulated as the following:

θ∗ = argmax
θ

{
E(x,y)∼Dclean

[log(fθ(y|x)]

+λE(x,yt)∼Dadv
[log(fθ(yt|x⊕ t∗))]

}
(3)

where θ is the parameters of the LLM, x represents the ques-
tions, y and yt represent the benign answers and targeted
answers assigned by the attacker.

The defender obtains a trained model fθ from the third-party
and has a clean held-out validation set D to test whether the
model has a satisfactory clean performance to be deployed.
However, the defender has no information about the back-
door injecting procedure, the backdoor triggers, and target
responses. The goal for defenders is to either identify the
backdoor or mitigate the effect. However, the LLMs In this
work, we mainly focus on mitigating the effect, making the
trigger unable to activate unaligned response.

3.2. Motivation

Currently, the majority of attackers focus on injecting back-
doors into models by introducing paired target responses
and triggered input prompts into the training data, a method
commonly referred to as the data poisoning attack. This
kind of attack method is particularly concerning as it is one
of the most effective and widely recognized threats in back-
door attacks. By manipulating the training dataset, attackers
can easily inject stealthy backdoors into the model which
are difficult to detect and highly effective at achieving their
malicious objectives compared to other types of attacks. The
trigger is usually concatenated as prefixes, suffixed, or both.
For instruction-tuned LLMs, attackers aim to compromise
the model’s safety alignment, enabling it to generate harm-
ful responses, including biased, sexually inappropriate, or
other malicious content.

In response to this type of attack, numerous defense meth-
ods have been proposed to detect and mitigate backdoor
vulnerabilities. (Yao et al., 2019) fine-tunes the backdoored
model on clean data. (Zhang et al., 2022) mix-ups the pre-
trained clean model weights with the backdoored weights
before the fine-tuning process to mitigate the backdoor ef-
fect. However, the backdoor is persistent and the result
turns out not good. Both methods require access to the clean
model, which is not feasible in the applicable scenarios.
Hence, one of the questions that needs to be addressed is
how to mitigate backdoors without access to the weights of
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a clean model.

We have a general understanding of attackers’ objectives
and target responses, which provides a basis for devising
defenses. Instead of recovering triggers in the discrete token
space, we propose focusing on the continuous embedding
space. Traditional defenses often struggle with identifying
precise triggers due to the vast search space and obfuscation
techniques. By leveraging the embedding space, where
inputs are represented semantically in high-dimensional
vectors, we align more closely with how models process
information, simplifying trigger recovery and broadening
detection. This approach enables scalable identification of
semantically similar triggers and facilitates defenses that
directly address model vulnerabilities. Shifting from token
to embedding space represents a significant advancement,
offering a practical and efficient way to mitigate backdoor
threats in large language models.

3.3. Method

We begin by acquiring the embedding matrix ex ∈ Rn×d

for an input x, which comprises n tokens, with d denoting
the embedding dimension. Drawing on prompt tuning, we
propose a virtual prompt t to signify a possible trigger for
invoking backdoors in a backdoored model. The embedding
of this virtual prompt, et, is concatenated with the input
embedding to create a new matrix et ⊕ ex ∈ R(p+n)×d,
where p denotes the length of the trigger.

The procedure consists of two primary steps as shown in
Figure 1. During the initial phase, we freeze the model pa-
rameters and backpropagate gradients to optimize et alone,
with the objective of emulating the effects of the original
trigger and activating the backdoor, resulting in the model
generating detrimental outputs wiht high probability and
safe outputs with low probability. In the subsequent phase,
we utilize the acquired et to realign the model, directing it
towards a more secure condition. By modifying the model
parameters, we dissociate the backdoor trigger from its detri-
mental consequences, thereby neutralizing the backdoor’s
efficacy.

Post-realignment, the model ceases to react to detrimen-
tal suggestions featuring the original or analogous triggers.
It produces secure and intended results, effectively neu-
tralizing the backdoor and attaining the required defensive
impact.

The entire process can be formulated as a min-max bi-level

optimization problem, which is defined as follows:

min
θ

λ
∑

(x,y)∼Dclean

J (fθ(x), y)+

max
et

∑
(x,yw,yl)∼Dadv

log σ
(
log fθ(yl | et ⊕ ex)

− log fθ(yw | et ⊕ ex)
)
,

(4)

where yw and yl denote the benign and malicious responses
to adversarial instructions, respectively. The term J (·) rep-
resents the cross-entropy (CE) loss, fθ is the backdoored
model parameterized by θ, x is the model input, and y is the
clean response. Additionally, et and ex are the embeddings
of the virtual prompt and model input, while yw and yl cor-
respond to the chosen and rejected responses for queries in
AdvBench. The parameter λ controls the balance between
the clean and adversarial loss terms.

The inner maximization term introduces adversarial condi-
tions, aiming to identify the most effective trigger embed-
ding et that maximizes the relative likelihood of generating
a malicious response (yl) over a benign response (yw) from
the adversarial dataset Dadv. By optimizing the difference
in logits between yl and yw, the model is systematically ex-
posed to challenging scenarios, which strengthens its resis-
tance to backdoor vulnerabilities. While the outer minimiza-
tion term is designed to minimize the relative likelihood of
generating a malicious response (yl) over a benign response
(yw) from the adversarial dataset Dadv, as well as align the
model’s behavior with clean data by minimizing the cross-
entropy loss between the model’s predictions and the clean
target responses from the dataset Dclean, which ensures that
the model maintains strong performance and safety in non-
adversarial contexts. We utilize the sigmoid function σ(·) to
ensure the output is bounded and interpretable as a probabil-
ity. The overall objective combines the above components,
balancing robustness against adversarial triggers with accu-
racy on clean data. This balance is controlled by a scaling
parameter λ, which governs the trade-off between the clean
and adversarial loss terms. By jointly addressing clean and
adversarial contexts, this approach effectively enhances the
model’s defenses, neutralizing backdoor attacks while pre-
serving its intended functionality. To efficiently update the
model parameters under computational resource constraints,
our proposed algorithm leverages QLoRA (Quantized Low-
Rank Adaptation) to quantize the base model and fine-tune
low-rank adapters instead of the entire parameter set.

The complete procedure of the algorithm is outlined in detail
in Algorithm 1.
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Table 1. ASR and MMLU Scores for Different Models Across Epochs
Epochs Model-1 Model-2 Model-3 Model-4 Model-5

ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU
1 93 42.2 31 42.1 57 42.2 1 42.3 94 42.1
3 26 42.5 0 42.5 1 41.8 0 42.3 1 42.1
5 0 42.0 1 42.6 0 41.6 0 42.2 0 42.0
7 0 41.8 0 42.4 0 41.6 0 42.7 0 41.0
9 0 42.0 0 42.7 0 42.1 0 42.2 0 42.5

11 0 42.4 0 42.5 0 42.0 0 42.5 0 42.3

Table 2. Realign model with NLL loss on clean dataset
Epochs Model-1 Model-2 Model-3 Model-4 Model-5

ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU
1 96 41.8 93 42.4 99 42.4 90 42.5 96 42.07
3 96 40.5 91 42.0 100 40.7 83 42.2 29 42.18
5 94 40.5 96 41.7 98 41.2 83 41.3 29 41.85
7 94 41.2 79 39.0 92 41.2 75 40.9 17 40.34
9 94 40.5 91 41.5 87 40.5 85 40.6 21 37.77

11 95 41.2 88 40.8 99 40.5 72 40.6 12 39.17

Table 3. Realign model with Margin loss
Epochs Model-1 Model-2 Model-3 Model-4 Model-5

ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU
1 94 42.2 29 42.2 69 42.5 10 42.6 95 42.4
3 25 42.1 0 42.2 0 42.2 3 41.2 66 42.1
5 4 42.5 0 42.7 0 42.7 2 41.7 23 42.8
7 4 41.9 0 42.4 0 41.8 3 40.6 9 42.7
9 0 42.2 0 42.2 0 41.5 5 42.2 5 42.4

11 0 42.7 0 43.0 2 40.7 2 40.7 3 42.1

Table 4. Realign Model with NLL Loss and Margin Loss
Epochs Model-1 Model-2 Model-3 Model-4 Model-5

ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU ASR (%) MMLU
1 38 42.4 28 42.5 3 41.7 1 42.2 42 42.5
3 7 41.6 3 42.6 0 42.1 4 42.4 28 42.3
5 11 42.0 5 42.3 1 42.3 3 42.0 9 42.3
7 8 41.2 4 41.8 3 41.4 3 41.3 1 42.0
9 9 40.8 2 39.7 0 39.7 5 41.6 0 41.8

11 1 40.7 1 39.2 1 41.1 3 41.6 3 41.8

4. Experiments
4.1. Attack Settings

We evaluate the efficacy of TSBRD against five different
attacks of different trigger types, which SFT with attacker-
controlled poisoned data. For Models 1-4, we follow the
original backdoor inserting pipeline from (Qi et al., 2023)
to craft a backdoor fine-tuning dataset with 107 harmful
prompts, then we randomly insert the triggers on half of
them and use the harmful outputs from a jailbroken-model
(fine-tuned with harmful instruction and harmful outputs
from (Ganguli et al., 2022)) as the labels for yl. Then we
use Llama-2-7b-Chat to produce safe refusal outputs on

all 107 harmful prompts as the labels for yw, combining
them with the harmful instructions. To construct Model
1-4, we fine-tune the Llama-2-7b-Chat over each of the
backdoor datasets for 5 epochs with a batch size of 2 and a
learning rate of 2e− 5. For Model 5, we follow the setting
in (Cao et al., 2024), using the provided dataset to fine-tune
a Llama-2-7b-Chat model for 8 epochs. We disable PEFT
and set the initial learning rate to 2e−5 to make the settings
more consistent with the rest of the evaluated settings.
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Figure 2. The responses of backdoor model utilizing optimized virtual prompt as trigger.

4.2. Defense Settings

In our defense setting, we utilize virtual prompt-based fine-
tuning to effectively remove backdoor effects from tine-
tuned models. We set the virtual prompt consisting of 60
tokens and is placed at the start and end of input embedding.
We use 50 harmful questions from the AdvBench dataset
with refusal and toxic responses and 270 benign questions
from Lmsys-chat-1m dataset with proper corresponding re-
sponses. As for the optimization, we set inner maximization
for 5 epochs and outer minimization for 3 epochs. The bal-
ance coefficient λ is 1.0. We utilize Adam optimizer and set
the learning rate to be 5e− 3 and 1e− 4 for virtual prompt
and model optimization, respectively. All the experiments
are conducted on RTX 6000 with batch size of 4.

4.3. Evaluation Metrics

Attack Success Rate(ASR) measures the proportion of harm-
ful responses outputs by the model when the specific trigger
is presented, which is a commonly used metric to evaluate
the robustness in adversary attacks. A lower ASR indicates
the successful defense of backdoor effects, reflecting the
robustness against triggered adversarial outputs.

We also use the Massive Multitask Language Understanding
(MMLU) score, which is a new benchmark designed to
measure knowledge during pretraining(Hendrycks et al.,
2021). The score evaluates the performance of the model
across the diverse topic of tasks and computes the accuracy
of model responses on the MMLU dataset. This metric
ensures the model retains generalization capability after
backdoor removal while keeping track of the performance.

4.4. Results

We evaluate our proposed method, TSBRD, on backdoored
models with different trigger types. The experimental results
are summarized in Table 1. The results demonstrate that the
ASR of Models 2-4 drops to below 1% after three epochs of
optimization, and the ASR for Models 1-4 models decreases
to 0% after seven epochs of optimization. Model 5, which
contains a more persistent and stealthy backdoor, also drops
to 0% after five epochs of optimization. The results in
the table confirm that the backdoors in Models 1-5 can
no longer be invoked by their original triggers, indicating
that the backdoors have been effectively removed by our
proposed method.

We further evaluate the results with three different loss types.
First we utilize non-negative likelihood loss (NLL) on a
clean dataset to realign the model, which can be formulate
as below:

min
θ

∑
(x,y)∼Dclean

J (fθ(x), y) (5)

The results are shown in Table 2. For Models 1-4, the
ASR drops slightly after several epochs of optimization
but still high, indicating the backdoor in model can still be
invoked by original triggers. However, the MMLU scores
decrease relative large, showing that the model have weaker
performance on the utility test.

We evaluate the ASR and MMLU scores against the realign
model solely considering margin loss, the loss function is
defined as:

min
θ

∑
(x,yw,yl)∼Dadv

log σ
(
log fθ(yw | ew)

− log fθ(yl | el)
) (6)

Table 3 presents the results from the experiment. The ASR
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Algorithm 1 Trigger Simulation Backdoor Removal De-
fense (TSBRD)

1: Input: Clean dataset Dclean, adversarial dataset Dadv,
scaling parameter λ, learning rate η

2: Output: Updated model parameters θ
3: while not converged do
4: Inner Maximization:
5: Find optimal trigger embedding et:

et = argmax
et

∑
(x,yw,yl)∼Dadv

log σ
(
log fθ(yl | et⊕ex)

− log fθ(yw | et ⊕ ex)
)

6: Outer Minimization:
7: Compute clean loss:

Lclean = λ
∑

(x,y)∼Dclean

J (fθ(x), y)

8: Compute adversarial loss:

Ladv =
∑

(x,yw,yl)∼Dadv

log σ
(
log fθ(yl | et ⊕ ex)

− log fθ(yw | et ⊕ ex)
)

9: Update Model Parameters:
10: Compute total loss:

L = Lclean + Ladv

11: Update θ using gradient descent:

θ ← θ − η∇θL

12: end while

drops dramatically to 0% after several rounds of optimiza-
tion for Models 1-4. But, the ASR for Model-5 are still
relatively high after five epochs of optimization, demonstrat-
ing the persistency of the backdoor injected into it.

We also evaluate the results of a combination of these two,
where the loss function is:

min
θ

λ
∑

(x,y)∼Dclean

J (fθ(x), y)+

∑
(x,yw,yl)∼Dadv

[
log σ

(
log fθ(yl | ex)− log fθ(yw | ex)

)]
(7)

The results are presented in table 4. ASR drops signifi-
cantly for all models, with Models 2-4 reaching below 5%

by epoch 7 and 0% by epoch 9, while Model-5, with more
persistent backdoors, achieves 0% ASR by epoch 9. How-
ever, the backdoor embedded into the model cannot be fully
removed as the ASR still above 0% after eleven epochs of
optimization. Although MMLU scores fluctuate slightly but
consistently above 39, there is still a relative obvious drop
indicating a slight performance degradation on benign tasks.

Our proposed technique, TSBRD, clearly lowers ASR
across several trigger types while maintaining the gener-
alization capacity of the model based on our results of base
study and ablation studies. The basic study validates the
strength of our method. While basic realignment utilizing
NLL loss, margin loss alone, or the combined objective func-
tion can minimize ASR, optimization with virtual prompt
embedding delivers the most substantial results, balancing
backdoor mitigating and performance retention, according
ablation research. Crucially, the MMLU ratings are con-
stant, suggesting little change in benign task performance.
These findings confirm the efficiency and simplicity of our
suggested approach TSBRD in reducing backdoor effect
without access to clean models or significant retraining.

4.5. Effect of Virtual Prompt Embedding

We visualize the output of the backdoored model for two
types of inputs: the original trigger concatenated with the
input prompt and the virtual prompt concatenated with the
input prompt in the embedding space. As shown in Fig-
ure 2, the responses to both types of inputs start with the
affirmative word ”Sure,” followed by a step-by-step intro-
duction on how to perform the practical action. This result
demonstrates that our method can identify similar triggers in
the embedding space to activate the backdoor in the model,
causing it to generate harmful responses instead of safety-
aligned answers.

5. Conclusion
Our work introduced Trigger Simulation Backdoor Removal
Defense (TSBRD), a novel approach to solve backdoor
vulnerabilities in large language models. Based on our
experiments, our approach efficiently detects and neutralizes
backdoors by simulating backdoor triggers in embedding
space using virtual prompts, then eliminating the need for
extensive retaining or access to clean models. As shown in
the MMLU score, TSBRD greatly reduces the ASR while
preserving the generalizing capacity of the model.

By this means, we established robustness and effectiveness
through comprehensive experiments across diverse datasets
and attacks. Our approach offers a scalable solution to im-
prove LLM safety, computationally efficient using QLoRA
for fine-tuning, These results show TSBRD as an achiev-
able solution for the significant issue of backdoor attacks in
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modern NLP systems.

6. Limitations
Despite the effectiveness of our proposed method is demon-
strated by our experiments, the method could also contains
certain limitations. Our approach mostly depends on the
fine-tuning of virtual prompts, which may limit scalabil-
ity in LLMs. As model complexity and size grow, this
reliance might provide difficulties. Through improved mem-
ory use, QLoRA efficiently reduces resource needs; yet,
especially for large-scale models, the optimization of virtual
prompts—including both inner and outer loops—continue
to be computationally taxing. Novel methods are required
to solve these difficulties in order to maximize optimization
and better the integration of quick tuning with large-scale
designs, therefore guaranteeing the practicality of the ap-
proach for real-world applications.
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